

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

MOBILE SITUATIONAL AWARENESS TOOL:
UNATTENDED GROUND SENSOR-BASED REMOTE

SURVEILLANCE SYSTEM

by

Bradley C. Palm
Ryan P. Richter

September 2014

Thesis Advisor: Gurminder Singh
Co-Advisor: John Gibson

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2014

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
MOBILE SITUATIONAL AWARENESS TOOL: UNATTENDED GROUND
SENSOR-BASED REMOTE SURVEILLANCE SYSTEM

5. FUNDING NUMBERS

6. AUTHOR(S) Bradley C. Palm, Ryan P. Richter

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

The listening post/observation post is a method employed by infantry units in combat to increase battlefield situational
awareness and prevent surprise by the enemy. This technique is costly to the employing unit in terms of manpower
requirements and increased risk to friendly personnel. To reduce these costs, we created a prototype, the Mobile
Situational Awareness Tool, that combined commercial off-the-shelf components with wireless unattended ground
sensors for the purpose of automating the listening post/observation post for the tactical infantry unit.

The prototype system incorporated wireless sensor node prototypes created by the Defense Advanced Research
Projects Agency, originally intended for the creation of a smart minefield. A web application was created using a
custom Node.js server that enabled cross-platform monitoring of the system by warfighters in the field with mobile
smart-devices to include smart-phones and tablets.

Field-testing of the prototype showed the system capable of detecting and classifying intruders in the sensor field but
revealed that more robust threat classification algorithms utilizing multiple sensor modalities would yield a greater
degree of automation and autonomy.

14. SUBJECT TERMS Unattended Ground Sensors, Wireless Sensor Network, Mesh Network, Ad-
Hoc Network, Automated Listening Post/ Observation Post, Intelligence, Surveillance, and
Reconnaissance, Single Page Application, Web Application, Responsive Web Design, Mobile
Monitoring Platform

15. NUMBER OF
PAGES

141

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

MOBILE SITUATIONAL AWARENESS TOOL: UNATTENDED GROUND
SENSOR-BASED REMOTE SURVEILLANCE SYSTEM

Bradley C. Palm
Captain, United States Marine Corps
B.S., University of St. Thomas, 2008

Ryan P. Richter

Captain, United States Marine Corps
B.B.A., University of San Diego, 2008

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2014

Authors: Bradley C. Palm

Ryan P. Richter

Approved by: Gurminder Singh
Thesis Advisor

John Gibson
Co-Advisor

Peter Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The listening post/observation post is a method employed by infantry units in combat to

increase battlefield situational awareness and prevent surprise by the enemy. This

technique is costly to the employing unit in terms of manpower requirements and

increased risk to friendly personnel. To reduce these costs, we created a prototype, the

Mobile Situational Awareness Tool, that combined commercial off-the-shelf components

with wireless unattended ground sensors for the purpose of automating the listening

post/observation post for the tactical infantry unit.

The prototype system incorporated wireless sensor node prototypes created by the

Defense Advanced Research Projects Agency, originally intended for the creation of a

smart minefield. A web application was created using a custom Node.js server that

enabled cross-platform monitoring of the system by warfighters in the field with mobile

smart-devices to include smart-phones and tablets.

Field-testing of the prototype showed the system capable of detecting and

classifying intruders in the sensor field but revealed that more robust threat classification

algorithms utilizing multiple sensor modalities would yield a greater degree of

automation and autonomy.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. OBJECTIVE ..4
C. THESIS ORGANIZATION ..7

II. BACKGROUND INFORMATION ...9
A. PROBLEM DOMAIN ...9

1. History ...9
2. LP/OP Tactics, Techniques, and Procedures10
3. Introduction of Technology ...11

B. SIMILAR ATTEMPTS TO SOLVE THE PROBLEM13
1. Tactical Remote Sensor System ..13
2. Border Patrol ..15

C. RELATED TECHNOLOGICAL APPLICATIONS16
1. Wireless Sensor Networks ...16
2. Defense Advanced Research Projects ..17
3. Single Board Computers ...18
4. Node.js ...19
5. Responsive Design ..20
6. Military Push for Mobile Device Applications21

D. SUMMARY ..22

III. MOBILE SITUATIONAL AWARENESS TOOL CONCEPT DESIGN23
A. PROBLEM DESCRIPTION...23

1. Utility of the LP/OP ...23
2. Limitations of the Traditional LP/OP ..24
3. Formal Marine Corps LP/OP Requirements25
4. Historical Lack of Automation ...27
5. Requirements for an Automated LP/OP ...27

B. CONCEPT FOR AN AUTOMATED SOLUTION TO THE LP/OP29
1. Problem Solution: Proposed Architecture29

a. Sensor Nodes ...29
b. Mobile Devices ..31
c. Application Server ...34
d. Overall System Design ..35

2. Possible Use Case and Employment ...36
a. Ambush ..37
b. Reverse Slope Defense ..38
c. Urban Defense...39
d. Tactics, Techniques, and Procedures for Employment40

3. Testing Plan ..41
C. CONCLUSION ..41

IV. MSAT IMPLEMENTATION AND TESTING ..43

 viii

A. SENSOR NODES ...43
1. ADAPT Smart Munitions..44
2. ADAPT Sensor Node Prototype Specifications44

a. Core Hardware ..44
b. Sensors ...45
c. Housing ...46
d. Operating System ..46
e. Node Software ...46
f. Power Consumption and Duty Cycle......................................47

3. ADAPT Sensor Node Operation ...48
a. Communication Protocol ..48
b. Network Formation ...50
c. Threat Detection and Tracking ..51
d. Data Sharing ...52

4. ADAPT Sensor Nodes Limitations ...53
a. Inoperative Cameras ...53
b. Undeveloped Threat Tracking and Classification

Algorithm ...53
5. Testing the Adapt Sensor Nodes ...54

a. Summary of Action ...54
b. Testing ...54
c. Results..57
d. Conclusion ...61

B. APPLICATION SOFTWARE ..62
1. Server ..63

a. Hardware ...63
b. Version 1: LAMP Stack ..63
c. Version 2: Node.js Server ...66
d. Performance Test: Comparison of Apache2 versus

Node.js Implementations ..67
e. Interface with Nodes ...74
f. Replacing AJAX with WebSockets ...75
g. Blue Force Situational Awareness: Locations and Chat76
h. Remote Command and Control (C2) Configuration77
i. Security ..78
j. Camera Solution and Streaming Video79

C. UI ...81
1. RWD Description ...81
2. Supporting Technology ...88
3. Testing ...89

D. COMPLETE SYSTEM TESTING ..91
1. Summary of Testing ...91
2. Concept of Testing ...92
3. Conduct of the Test ..92

a. Scenario ...93

 ix

b. System Setup ..93
4. Testing Protocol ...97

a. Simulated Intrusions into the Sensor Field97
b. Use of Mobile Devices to Monitor the Sensor Field98

5. Limited Scope of Testing ...99
6. Discussion of Results ..99

a. Node Emplacement ...99
b. Network Formation ...100
c. Intrusion Events and Generating SPOTREPs100
d. Usability Issues ..105
e. Latency Issues ...105
f. Battery Performance and Power Consumption105
g. Environmental Disturbances ..106
h. User Feedback ...107

7. Conclusion of Field Testing ...107
E. CHAPTER SUMMARY ..109

V. SUMMARY AND CONCLUSIONS ..111
A. SUMMARY ..111
B. MSAT PERFORMANCE ...113
C. RECOMMENDATIONS FOR FUTURE WORK114

LIST OF REFERENCES ..117

INITIAL DISTRIBUTION LIST ...123

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. USMC TRSS Components, from [4] ...14
Figure 2. UI Wire Frame ...34
Figure 3. Logical Network Topology ..35
Figure 4. Physical Network Topology ..36
Figure 5. Ambush Scenario ...38
Figure 6. Reverse Slope Defense Scenario ...39
Figure 7. Urban Defense Scenario ..40
Figure 8. ADAPT Sensor Top, Side, and Cutaway Views, from [53]45
Figure 9. Network Formation, from [53] ..49
Figure 10. Bundle Format, the Data Protocol Unit for SAS, from [53]50
Figure 11. Aberdeen Test Network Formation with Neighbor Links55
Figure 12. Broken Track Following One Person ..59
Figure 13. Continuous Track Following One Person ..60
Figure 14. Continuous Track Following Two People ...60
Figure 15. MSAT Physical Topology Diagram ..62
Figure 16. MSAT Logical Topology Diagram ..66
Figure 17. Testing Network Configuration ...69
Figure 18. Comparison of Average Response Times for Concurrent Requests70
Figure 19. Node.js Server’s Service Rate for Requests ..71
Figure 20. Comparison of Average Response Times for Persistent Connections72
Figure 21. Comparison of Error Rates for Persistent Connections72
Figure 22. Application Container Diagram ...75
Figure 23. Fluid Element Example in the MSAT CSS3 File ..82
Figure 24. Flexible Image Example in the MSAT CSS3 File ...83
Figure 25. Media Query Example in the MSAT CSS3 File ..83
Figure 26. Desktop Device Running MSAT in Chrome Browser84
Figure 27. Desktop Device Running MSAT in Safari Browser ..85
Figure 28. Android Tablet Landscape View ...85
Figure 29. Apple iPad Mini Landscape View ...86
Figure 30. iPhone4 Landscape View ...86
Figure 31. iPhone4 Portrait View ..87
Figure 32. iPhone4 Portrait View with Menu Expanded ..87
Figure 33. MSAT UI Version 1...90
Figure 34. MSAT UI Version 2 with a RWD Approach ...91
Figure 35. Testing Site ..94
Figure 36. Side View of Nodes in Load-Bearing Pack ...95
Figure 37. Top View of Nodes in Load-Bearing Pack ..95
Figure 38. Android Tablet Depicting First Intrusion Detection from the West Side of

the Sensor Field..101
Figure 39. Intruder Continuing into the Sensor Field and Generating Second

Detection ..102

 xii

Figure 40. Intrusion Classified Using the Camera After Generating Third Detection
and the Track Indicator ..102

Figure 41. Operator Completing SPOTREP With Form After Intrusion Classification .104
Figure 42. SPOTREP Sent to Higher Headquarters Via Chat Function104
Figure 43. Multiple Confused Tracks Due to Environmental Disturbances107

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

ADAPT adaptable sensor system

AJAX asynchronous JavaScript and XML

AP access point

BYOD bring your own device

C2 command and control

CBP U.S. Customs and Border Protection

CFF call for fire

C-IED counter-improvised explosive device

COC combat operations center

COTS commercial off-the-shelf

CSS3 cascading style sheets version 3

DARPA defense advanced research projects agency

DHS Department of Homeland Security

DOM document object model

ECBC Edgewood Chemical Biological Center

FDMA frequency division multiple access

GCSS global combat support system

GPS global positioning system

HMMWV high mobility multipurpose-wheeled vehicle

HTML5 HyperText Markup Language 5

ISR intelligence, surveillance, and reconnaissance

IV inter-visual

LAMP Linux, Apache, MySQL, PHP

LP/OP listening post / observation post

MAC medium access control

MAGTF Marine air-ground task force

MCRP Marine Corps reference publication

MCWP Marine Corps warfighting publication

MEF Marine expeditionary force

MJPEG motion joint photographic experts group

MOOTW military operations other than war

 xiv

MSAT mobile situational awareness tool

MSS mobile surveillance system

NAT network address translation

OIG Office of Inspector General

ORP operational rally point

OTA over the air

OTIA Office of Technology Innovation and Acquisition

PB patrol base

PIR passive infrared sensor

PSK pre-shared key

RFI request for information

RVSS remote video surveillance system

RWD responsive web design

SBC single board computer

SCAMP sensor control and management platoon

SIS shared information space

SMMS sensor mobile monitoring system

SPA single page application

T&R training and readiness

TAOR tactical area of operations

TCP/IP Transmission Control Protocol/Internet Protocol

TDMA time division multiple access

TLS transport layer security

TO/TE task organization and table of equipment

TRSS tactical remote sensor system

TTP tactics, techniques, and procedures

UDP user datagram protocol

UI user interface

UGS unattended ground sensor

USBP United States Border Patrol

WSN wireless sensor network

XML extensible markup language

 xv

ACKNOWLEDGMENTS

We would like to thank our wives and families for their unending support.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

Situational awareness is essential to the warfighter to achieve victory on the

battlefield. Combat leaders require situational awareness to make timely and accurate

decisions. Faster and better decisions lead to momentum and the outpacing and

destruction of the enemy. One of the most fundamental ways that a ground warrior

increases his situational awareness is through listening and observation posts (LP/OPs).

LP/OPs are small groups of troops (usually 2–4 men) that are emplaced in an area to

observe a particular sector of the battlefield that is not observable by the main body of a

unit. This extends the range of observation of the unit and allows for earlier detection of

enemy activity, thus improving the awareness of the unit leader. The utilization of

LP/OPs is a basic and proven combat tactic. Requiring no specialized training or

equipment, conducting LP/OPs is a capability inherent to any infantry unit. American

combat forces have utilized them throughout history.

LP/OPs are utilized in a wide variety of military operations. In defensive

operations, they are emplaced forward of defensive lines in order to see beyond

intervening terrain and give advanced warning of approaching attackers. Used in

offensive operations, they are emplaced on the flanks of an ambush position in order to

report the direction of the enemy’s approach. They are also frequently used in raids,

vehicle checkpoints, strongpoints, and counter-improvised explosive device (C-IED)

operations.

LP/OPs have disadvantages. They require that troops be separated from the main

body of the unit, taking away combat power that can be massed against the enemy.

Though more LP/OPs expand the range of observation for the unit leader, each LP/OP

that is employed takes troops away from the main engagement area. Thus, manpower

limitations place an upper bound on the total number of LP/OPs that can be emplaced by

a single unit. Also, isolating the troops of the LP/OP from their unit makes them more

vulnerable to being killed, wounded, or captured [1]. The isolation of the LP/OP means

 2

that it is less capable of receiving adequate supporting fires from the employing unit in

the event of enemy contact or engagement. Also, having friendly forces forward of

enemy lines occupying these LP/OPs can constrain (mask) the fires of the friendly unit

and complicate geometries of fire. This means that because friendly LP/OPs are located

between friendly forces and the enemy, LP/OPs run a significant risk of fratricide if

friendly forces do not carefully coordinate their fires. Finally, because LP/OPs must be

continually manned, they can interfere with the sleeping patterns of troops by altering the

rest-plan of a unit over long periods of operation. The stress of maintaining LP/OPs

permeates all levels of leadership within a unit. LP/OPs require significant time spent

planning and coordinating at the upper-leadership levels of a small, tactical unit. At the

lowest levels, being isolated from the main body of the unit and the disruption of regular

sleep cycles can have a negative effect on morale.

Automation through sensors and computing technology could augment or

potentially replace the manned LP/OP. A surveillance system that is compatible with a

variety of commercial off-the-shelf (COTS) smart devices could simultaneously decrease

manpower requirements and reduce risk to friendly personnel who would otherwise need

to man the isolated LP/OPs. This system could provide enhanced situational awareness

for combat leaders through a real-time monitoring capability.

With much research underway regarding smartphone use on the battlefield [2],

this system would leverage the anticipated proliferation of personal handheld smart

devices on the on the battlefield and would mitigate the requirement for specialized

monitoring equipment characteristic of other remote surveillance systems. Since

monitoring of such a system would be conducted on general-purpose smart devices, this

system would reduce the amount of gear that has to be carried, powered, and maintained

by the warfighter operating in an austere environment. Furthermore, all members of a

unit possessing a smart device and within range of the network could access the system’s

monitoring interface simultaneously, enabling maximum situational awareness within the

unit. This is not possible for a sensor system with only a limited number of specialized

and dedicated monitoring devices.

 3

Previously developed technology related to ground sensors does not adequately

address the need for automation of the LP/OP at the small unit level with the ability for

distributed, cross-platform monitoring through the use of COTS smart devices.

Consisting of a suite of seismic and infrared intrusion detecting sensors, relay devices,

and monitoring equipment, the Tactical Remote Sensor System (TRSS) is the primary

sensor system employed by the Marine Corps [3]. However, TRSS was not designed to

be utilized by small units to increase local situational awareness and influence tactical

battlefield decisions. Rather, the TRSS is a high-level intelligence collecting asset, meant

to be employed at the Marine Air-Ground Task Force (MAGTF) level and tightly

controlled by sensor control and management platoons (SCAMP) [3]. Additionally, the

TRSS is not interoperable with COTS smart devices and requires specially built

monitoring equipment. The two types of monitoring tools for TRSS are the sensor

mobile monitoring system (SMMS)—consisting of a high mobility multipurpose wheeled

vehicle (HMMWV) with a full load of dedicated communications equipment—and the

portable monitor, which is a handheld display unit designed primarily for testing the

sensors during emplacement. The need for dedicated monitoring equipment

unnecessarily adds to the combat load of dismounted infantry and to fuel requirements

when the SMMS is employed: the SMMS weighs 7,785 pounds, while the portable

monitor weighs five pounds per unit [3].

The TRSS also requires extensive training that makes it impractical for use by

basic infantry riflemen. TRSS operators in the Marine Corps are currently required to

attend five weeks of training at the Remote Sensor Operations Course. This level of

required training means that only SCAMP platoons consisting of specially trained sensor

operators are authorized to employ these systems. However, the shortage of SCAMP

platoons means that the majority of infantry companies in the Marine Corps will not have

access to the personnel required to operate these sensors. Even with sufficient sensor

operators, the Marine Corps allocates only 600–800 total sensors per Marine

expeditionary force (MEF), which equates to roughly 50–70 sensors per infantry

battalion, or 16–23 sensors per rifle company. One reason for this shortage is that TRSS

 4

sensors are expensive ($1,020,847.30 per unit) [4], even though [3] describes them as

expendable. This cost keeps sensors out of the authorized inventory of infantrymen.

The United States Border Patrol (USBP) is another organization that has looked to

leveraging technology in order to detect intrusion across border areas by unauthorized

personnel, a task that is similar to conducting a military LP/OP [5] to detect enemy

activity. The USBP employs a combination of technologies to monitor the southern

border of the United States, including the remote video surveillance system (RVSS), the

mobile surveillance system (MSS) and unattended ground sensors (UGS) [6]. The RVSS

is a system of fixed camera positions with the ability for remote monitoring and pan-tilt

control of the cameras, while the MSS consists of a camera mounted on a pole fixed to a

flatbed truck. Similar to the TRSS, all of these systems are relatively expensive, not fully

dismountable by foot soldiers, and not able to be monitored by a multitude of commercial

handheld devices.

B. OBJECTIVE

This thesis provides a reference design for an automated LP/OP to show the

viability of a portable UGS system for employment by the basic infantry rifleman that

automates or otherwise enhances the LP/OP to increase the situational awareness of the

Marine rifle squad. The mobile situational awareness tool (MSAT) is a prototype system

consisting of networked sensors, surveillance cameras, and a portable application server

with monitoring software that is compatible with a variety of COTS smart devices. This

system is inexpensive, modular, mobile, and user-friendly. It allows monitoring and

surveillance of the battlefield by combat warriors without the need for specialized

training, and has added functionality such as the tracking of friendly forces and tactical

chat capabilities, with the ultimate goal of maximizing situational awareness on the

ground.

MSAT incorporates a network of wireless sensor nodes that are capable of

automatic network formation and are enabled with passive infrared sensors (PIR) for its

primary means of intrusion detection. The Defense Advanced Research Projects Agency

(DARPA) developed these sensor nodes. After intrusion detection, threats are classified

 5

through the use of video cameras that are integrated into MSAT, by the operator. The

system uses an application server to process data from the sensor nodes and allows the

operator to monitor the sensor field from a handheld device. The whole system is light

enough to be transported completely by dismounted Marines. Furthermore, MSAT is

intended to be compatible with the greatest number of commercial smart-devices, to

include tablets and phones running Android and iOS operating systems.

MSAT was built for the particular use case of a Marine rifle squad conducting a

defensive battle position, a core task defined by the Marine Corps training and readiness

manual (T&R) [7]. In such a scenario, the rifle squad’s mission would be to repel an

enemy assault by fire and close-combat. Though intelligence would provide the squad

with a general idea as to the size and disposition of the enemy, as well as a general

estimate of the location of this enemy, the nature of defensive operations is that the exact

time of arrival, direction of approach, and makeup of the enemy would be uncertain. For

this purpose, the squad leader must emplace LP/OPs apart from his main battle positions

in order to provide early warning of an enemy approach or to warn of enemy infiltrating

from the rear. These LP/OPs also provide the squad leader with the ability to see into

dead space, or ground that is not observable due to masking by intervening terrain. The

farther out the squad leader places his LP/OPs, the sooner he is able to become aware of

the enemy and make maneuver decisions in order to most efficiently and effectively

engage the enemy. However, this carries an increased risk to the Marines of the LP/OP

due to the declining ability of the main battle position to support the LP/OP with fire in

the event of enemy contact. Also, because the rifle squad consists of only 13 Marines,

and because no position can be manned alone according to the Marine Corps buddy-team

philosophy, the squad leader can realistically emplace at most two LP/OPs.

In the defensive scenario, employing MSAT would enhance the security and

situational awareness of the squad without excessive manpower requirements. Ground

sensors and cameras can be emplaced farther out from the defensive position without

concern for Marines being isolated. Also, without Marines forward of the battle position,

there would be less risk of fratricide and fewer restrictions on fires. The squad can

emplace sensors to its rear, its flanks, in surrounding dead space (e.g., draws, holes) and

 6

over intervening terrain to detect enemy in areas that would otherwise be unobservable

(i.e., areas identified in the modified combined obstacle overlay). Since the squad is not

restricted to two or fewer LP/OPs, many more unobservable areas can be monitored

through the use of the system. Each of the squad’s three fire team leaders would be able

to monitor the sensor emplacements in real-time from his own handheld device and

observe evidence of enemy activity as it occurs. In this way, the distribution of

situational awareness information is automated, reducing voice radio traffic and

confusion. It also reduces the potential for noise required for verbal communication

(either direct or via radio), which can risk loss of the friendly element of surprise and

stealth. MSAT would function in low-visibility situations (e.g., nighttime, poor weather)

due to the versatility of the sensors.

As a supplement to our use case, the MSAT would have the ability to be

monitored from a remote combat operations center (COC). This means that military

personnel would be able to monitor the system from outside the local area of operations.

This would allow higher-level commanders to access real-time data on battlefield events,

thus increasing overall situational awareness in support of their ability to make better

decisions, anticipating the needs of the units about to encounter or engage enemy combat

elements. This capability, though, presents a networking challenge due to the need to

establish connectivity outside of MSAT while operating in a potentially infrastructure-

less environment. Thus, a mobile ad hoc networking capability may be essential.

Currently, there is no system being fielded by the Marine Corps with the ability to

execute the presented use case. Since the TRSS is unavailable to rifle squads, is too

expensive and complex to operate without specialized operators, and cannot be monitored

by multiple Marines simultaneously through the use of tactical smartphones, it is

inappropriate to our use case.

MSAT has several potential advantages. The relatively low cost of the system

due to the utilization of existing COTS components would make widespread adoption by

small infantry units feasible. The autonomous nature of the UGS-component makes

sensor field setup comparatively less risk-prone than sensor options requiring more

complex installation emplacement and setup. The ability to monitor the system from a

 7

wide variety of devices and from multiple devices simultaneously is novel and enhances

the potential for increased situational awareness by the squad, while at the same time

reducing the combat load for the infantry squad. MSAT also leverages the

familiarization most modern junior Marines have with smartphones and tablets to design

an interface that is intuitive and requires little specialized training [8]. Lastly, the

utilization of an asynchronous, non-blocking application server and WebSockets provides

operators with a fast and accurate monitoring application.

Testing the system highlights multiple weaknesses or areas for improvement for

MSAT. The system requires constant electrical power from batteries in order to power

the sensors’ GPS and radios, and power is also required to provide a constant Wi-Fi

bubble to allow remote communication access to the sensor field. Thus, operating time is

likely too short in its current state for actual deployment of the system in combat and

power saving strategies will have to be implemented.

C. THESIS ORGANIZATION

The rest of this thesis explores in detail the problem of developing a usable

surveillance tool for the modern foot soldier and presents MSAT as a possible solution.

Chapter II discusses how other UGS system implementations in use today fail to

adequately solve the problem of automating LP/OPs for infantrymen. Technologies and

related architectures that utilized in building the MSAT prototype are then presented.

Chapter III analyzes the task of conducting the LP/OP, as defined by the Marine

Corps Infantry T&R manual and broadly defines the specification and testing

requirements for the MSAT reference design.

Chapter IV describes the design, construction, and testing of the MSAT system.

Different iterations of the system are discussed, along with rationale for design choices

and considerations, to include the successes and failures encountered during the

developmental phase. Chapter IV also presents the performance of MSAT through

testing. Finally, it discusses potential weaknesses and shortfalls of the system.

 8

Chapter V, the conclusion, provides summary remarks regarding MSAT and

suggests future work to improve the system.

 9

II. BACKGROUND INFORMATION

A. PROBLEM DOMAIN

1. History

An inherent action in warfare is to make threat assessments and attempt to

mitigate the identified risks. Arguably, the use of LP/OPs can be traced back to the

beginnings of warfare. A history book of the Roman Empire describes an early

observation post, recounting, “The ground floors of these towers were used as living

quarters by the garrison of auxiliary soldiers (cavalry and infantry), while the upper floor,

furnished with a gallery, served as an observation-post from which the enemy could be

watched and signals given by means of torches” [9]. Another example of an early

LP/OP comes from the American Revolution, when colonial insurgents utilized

observation posts on Long Island to warn of inbound British Troops [10]. During the

challenging jungle fighting of Vietnam, LP/OPs were used extensively to facilitate early

warning in the dense vegetation that surrounded patrols and outposts [1].

The current employment of LP/OPs remains relatively unchanged from the early

days of warfare. LP/OPs in Afghanistan have been utilized to detect and disrupt the

enemy. They were reinforced with powerful optics that increased the range of

observation and allowed troops to view the surrounding terrain, even in low-light

conditions. Commanders in charge of combat outposts (COPs) utilized LP/OPs to deny

insurgent observers key terrain from which to coordinate indirect fire, and also prevent

the occupation and utilization of machine gun positions. Upon the unit leader

determining the necessity of LP/OPs as part of the defensive plan, leaders had to

determine the best way to support these positions with fires and logistics. Due to the

ruggedness of the Afghan terrain, which had the tendency to isolate American troops due

to strained communications [11], this proved a difficult challenge. Considerations

included the rotation schedule required to staff the position or positions, the amount of

logistical materials needed to keep the position combat effective, and the positioning of

the unit’s weapon systems and coordination of geometries of fire. After the initial

 10

planning and establishment of the LP/OPs, adjustments inevitably needed to be made to

reinforce the overall defensive plan.

2. LP/OP Tactics, Techniques, and Procedures

The Infantry Training and Readiness (T&R) Manual (NAVMC 3500.44A)

outlines the individual and collective training requirements that Marine Corps infantry

units will train toward in preparation for combat. One of the tasks found in the T&R

manual, titled INF-MAN-3102, is to conduct a listening post/ observation post. The T&R

manual outlines the condition, the standard, and the event components. The condition for

executing the LP/OP is stated as, “Given a unit, an order, and supporting a defensive

scheme of maneuver during daylight and limited visibility” [7]. The standard is “to

provide early warning while seeking to avoid direct enemy contact” [7]. The event

components are as follows: “conduct planning, conduct resupply, prepare for combat,

execute command and control, conduct a passage of lines, move to the LP/OP, conduct

link up as required, conduct relief in place as required, occupy the LP/OP, establish

security, conduct weaponeering, deconflict battlespace geometry, maintain

communications, improve positions as necessary, confirm prescribed routes to friendly

lines, provide early warning, report information, break contact as required, move along

prescribed route(s) back to defense, conduct passage of lines, conduct post combat

actions” [7]. When all these tasks are capably performed and validated by a commanding

officer, a Marine unit is considered proficient in the execution of the LP/OP.

A similar Army publication [12] delves deeper into describing the conduct of the

LP/OP, which is valuable in understanding the implementation of such a position.

According to [12], the first task is to properly select the location of the LP/OP. The

location should provide maximum observation of the assigned battle space. The location

should provide cover, concealment, and protection for the troops occupying the position.

It is also important that the route to and from the LP/OP be covered and concealed, so as

to allow troops to safely occupy, rotate into and out of, provide resupply, and egress from

the position. The location also needs to be within range of supporting fires by the main

body element utilizing their direct fire weapon systems. Next, a unit leader must assign a

 11

sector of observation in harmony with the overall plan, determine what kinds of things

the troops should be observing, and detail what needs to be reported to higher command.

The LP/OP should be robust enough to operate during low light conditions. It is

important, when selecting a position, to avoid obvious terrain that would draw attention

to the presence of the LP/OP and alert the enemy. An in-depth communication plan is

needed for the LP/OP, which includes redundant methods of communication. Wireless

radio communication, pyrotechnics or smoke to create a signal, and messengers can all be

used as a means of reporting.

Once these considerations are satisfied, the LP/OP plan is executed. At a

minimum, it is manned by two troops. For larger observation areas or longer periods

between relief, a fire team of four troops may be necessary to man the position. While in

the position, one troop is responsible for scanning the terrain and looking for anomalies

while their partner records the information. The troop acting as the observer should be

rotated every 20–30 minutes to reduce fatigue and increase attention. The LP/OP team

should be relieved every 2–4 hours, keeping in mind that each tactical scenario will drive

this determination. These details on the execution of the LP/OP highlight a very

deliberate planning process and taxing execution cycle that ultimately takes a toll on

those conducting the operation. Due to the inherent complications of utilizing human

beings in LP/OPs, there has been an attempt to apply technology toward this necessary

combat task in an overall effort to reduce the numerous pitfalls of requiring troops to man

these positions.

3. Introduction of Technology

The use of ground sensors in military applications dates back to the Vietnam era

and became public knowledge on April 17, 1967 [13], in a Newsweek article, and was

again alluded to on September 7, 1967 [13], when Secretary of Defense Robert

McNamara gave a press conference vaguely describing the concept of an electronic

barrier that was going to protect South Vietnam. This barrier was to be emplaced along

the demilitarized zone and the Ho Chi Minh trail to monitor enemy troop traffic, since the

carpet bombing raids of North Vietnam were ineffective against thwarting the enemies’

 12

ability to mobilize troops along these routes [14]. The creation of this barrier was

envisioned by a think tank organized in 1959, named the Jasons, which proposed a hybrid

approach of using ground positions, pinpointed bombing raids, air-laid mines, and the use

of battery-powered sensors [14]. This “highly theoretical” plan (e.g., code name Igloo

White), as stated by Military Assistance Command Vietnam Commander General

Westmoreland, was opposed by the Navy, Air Force, and the Marines [14]. The Marines

especially opposed the project, since the barrier’s location was in their battle space, and

they were responsible for providing troops and resources to the construction efforts.

However, sentiments quickly changed in regard to the new technology when the Marines

were provided the sensor systems in an effort to defend their outpost during the Battle of

Khe Sanh. After a month of flight operations, 316 acoustic and seismic sensors were air

delivered, equating to a total of 44 sensor strings [14]. The Marines were impressed with

the sensors’ ability to accurately track the enemy and credited the sensors with providing

forty percent of the actionable intelligence to the fire support coordination center [15].

They also credited the sensors with preventing another fifty percent loss of Marine forces

[15]. On one such occasion, sensors indicated that a massive troop formation was

assembling near a remote hilltop outpost. Artillery used this information to prevent the

enemy assault and inflict heavy losses on the North Vietnamese soldiers. The

commander of the 26th Marine Regiment, Colonel David Lownds, recounted this event at

Khe Sanh stating:

The sensors which had been emplaced on Route 9 to the Laotian border
suddenly came to life and it became obvious that a large column was
moving adjacent to Route 9 toward the base… By computing the length
of the column by information produced by the sensors, it became obvious
to me that an enemy regiment was trying to close the base. This
information coupled with possible assembly areas, allowed us to bring
down upon this unit devastating firepower to breakup the impending
attack. [16]

This was arguably the Marine Corps’, as well as any of the services’, first

exposure to automated sensor systems in an early warning role and its effectiveness was

proven through some of the most intense combat that American forces faced during the

Vietnam War. Igloo White operations on the trail continued after this, in support of the

 13

Air Force strategic bombing campaign, that targeted troop movements and logistical

resupply convoys along the Ho Chi Minh trail [14]. Overall, there were many localized

success stories involving the use of sensor systems in Vietnam; however, the price tag of

over one billion U.S. dollars per year and the minimal effect on the enemy at the strategic

level lead members of Congress and the military to question its future use [17].

After Vietnam, there were stock piles of sensors and supporting communications

equipment, and when a situation presented itself where the devices could be employed for

military operations other than war (MOOTW), America was eager to test them in a peace

keeping role [18]. When Israel and Egypt agreed to negotiations with the U.S. Secretary

of State, and a peace treaty was signed, there was a buffer zone created and the use of

ground sensors was utilized to enforce the treaty that both parties had signed [18].

Following the Sinai Treaty Agreement, there were no recognized uses of ground

sensors in combat scenarios or MOOTW, until Operation Iraqi Freedom (OIF) in Iraq and

Operation Enduring Freedom in Afghanistan (OEF). The border patrol had started

surveillance of America’s borders with sensor systems in the mid-1970s, and it continues

to do so today [18]. The gap in sensor usage between the Vietnam/Sinai eras and the Iraq

and Afghanistan wars can be attributed to the gradual improvement of sensor,

communication, and computer technology that made sensors a more viable possibility in

the modern era. Sensor systems were steadily researched and developed until reaching a

culminating point when devices were made small enough for practical usage and with

increased processing power. They also became cost efficient to the point that they could

begin to be considered for actual combat use without the cost impact of losing sensors.

This climate of reduced size and cost, coupled with increased computing power, ushered

in an advanced age where sensors began to realize high demand across current

battlefields.

B. SIMILAR ATTEMPTS TO SOLVE THE PROBLEM

1. Tactical Remote Sensor System

The military recognized the importance of the wireless sensor network and

unattended ground sensor technology breakthroughs and sought to integrate them into

 14

current operations. Since the Marine Corps’ first introduction to UGS in Vietnam, it

more recently fielded the TRSS, which is employed by the Ground Sensor Platoon

(GSP). This system was composed of a suite of sensors that offered detection of human

activity and movement of vehicles in real time. Due to it being a Marine Corps

surveillance asset, the actual specifications and limitations of the system were not

advertised, but it is public knowledge that the sensors have the ability to monitor an

environment for at least thirty days [4]. The system, as dictated by the task organization

and table of equipment document (TO/TE), was a MEF intelligence asset and therefore

very difficult to utilize at the small unit tactical level given that there were only 6 TRSS

systems allocated per MEF. According to the Marine Corps Global Combat Support

System (GCSS), one system cost $1,020,847.30. Equipment in a sensor set consisted of

both a vehicle monitoring system (A2306) and unattended ground sensors (A3255); both

are shown below in Figure 1. Each TRSS unit consists of 24 Seismic Intrusion Detectors

(SID), 24 Infrared Intrusion Detectors (IRID), 24 Air-Delivered Seismic Intrusion

Detectors (ADSID), four portable monitors, and one Sensor Mobile Monitoring System

(SMMS) [4].

Figure 1. USMC TRSS Components, from [4]

 15

Unfortunately, the mobile monitoring system was mounted in an HMMWV,

which did not lend itself well to transport within the confined areas where dismounted

troops were likely to operate. The system, compared to current sensor technology, can be

considered outdated, costly, bulky, and training intensive—it required members of the

GSP to be trained for a period of thirty-five days to properly employ the devices [4], a

period of time that would make widespread training of personnel within Marine infantry

battalions impractical.

2. Border Patrol

The USBP was another organization that invested heavily in technology capable

of detecting intrusion across border areas by unauthorized personnel. The USBP

employed a combination of technologies to monitor the southern border of the United

States, including RVSS, the MSS and UGS [6]. The RVSS was a system of fixed camera

positions with the ability for remote monitoring and pan-tilt control of the cameras, while

the MSS consisted of a camera mounted on a pole fixed to a flatbed truck. Similar to the

TRSS, all of these systems were relatively expensive, not fully dismountable by foot

soldiers, and not able to be monitored utilizing a multitude of commercial handheld

devices.

On April 5, 2011, U.S. Customs and Border Protection (CBP) issued a request for

information (RFI) to determine the current state of the art in UGS systems, what

advances had been made, and what would be the most effective employment of the

system. The CBP conveyed the importance of UGS to their mission by stating, “An

integral component to this situational awareness is the use of unattended ground sensor

technology that provides information on the location of potential illegal border entries.”

[19]. After almost two years of research and input from the market leaders in UGS

technology, the Office of Technology Innovation and Acquisition (OTIA) for the CBP

released a cancellation of the RFI stating, “OTIA is not planning to release a solicitation

for this specific requirement in the near future” [19]. On February 11, 2013, Wired (a

technology-oriented magazine) did an interview with CBP following this abrupt change

in direction for their UGS program. CBP’s public affairs officer, Jenny Burke, described

 16

the cancellation as a result of failure to resolve overlapping issues in integrating new

UGS with an existing system, oversaturation of radio frequencies, and limited bandwidth.

[20]. It was estimated at the time of the article that the sensor system issues highlighted

would be resolved within the next six to nine months, and the CBP would again try

upgrade the aging sensor system. The UGS upgrade was a necessary priority for the

CBP’s layered approach to defending the U.S. border, especially when considering the

December 2005 Department of Homeland Security (DHS) Office of Inspector General’s

(OIG) report [21]. In this report, the OIG found that only four percent of the detections

triggered by the sensors were illegal border crossings. During the review of a sample of

the system data, it was determined that thirty-four percent of the signals were false alarms

and the other sixty-two percent were unknown, due to the lack of a capability for the

sensors to classify the intrusion and the unavailability of personnel to respond.

This look at the CBP sensor system highlights multiple key reasons for continued

exploration in the wireless sensor networks (WSN) field. Foremost, the need for

commercially available low cost sensor systems is a common requirement for projects

within military and civilian entities. The technology, software, and hardware are at a

state of advancement where the introduction of a highly effective WSN is feasible.

Secondly, the complexity of issues surrounding the WSN domain is challenging and the

fundamental problems of routing, integration, networking, and data propagation have not

been solved.

C. RELATED TECHNOLOGICAL APPLICATIONS

1. Wireless Sensor Networks

Wireless sensor networks are increasing in popularity due to their ability to

greatly enhance our situational awareness of our surroundings and the fact that

technology has developed to a point where these devices are becoming financially

practical to emplace throughout the environment. This has enticing potential within the

military domain, since situational awareness is critical to maintaining surprise in

offensive actions and early detection in support of defensive operations. The authors of

Wireless Sensor Networks best sum up the challenges currently facing WSNs by saying:

 17

The design, implementation, and operation of a sensor network requires
the confluence of many disciplines, including signal processing,
networking and protocols, embedded systems, information management,
and distributed algorithms. Such networks are often deployed in resource
constrained environments, for instance with battery operated nodes
running untethered. These constraints dictate that sensor network
problems are best approached in a holistic manner, by jointly considering
the physical, networking, and application layers and making major design
trade-offs across the layers. Consequently, for an emerging field such as
sensor networks that involves a variety of different technologies, a student
or practitioner often has to be versed in several disparate research areas
before he or she can start to make contributions. [22]

Another interesting relevant challenge relates to how the military will adapt and

incorporate this kind of device into current military operations. The question of how the

basic Marine riflemen can employ this tool is an interesting one to military officers. That

question also touches upon the fundamentals of usability design within the study of

Computer Science. Understanding how an end-user interacts with a WSN should be the

focal point in integrating these devices successfully into combat operations. A more

user-friendly approach, coupled with a lightweight employment of the device would

greatly enhance the adaptation and employment of this system in tactical operations at the

small unit level.

2. Defense Advanced Research Projects

Defense Advanced Research Projects (DARPA) is experimenting with Wireless

Sensor Networks, particularly as part of the Adaptable Sensor System (ADAPT)

program. The focus of this program is to streamline the development and procurement of

intelligence, surveillance, and reconnaissance (ISR) sensor systems, within the military,

so that the sensor systems can keep pace with the commercial market and allow for the

best tools to be fielded for the mission. It is estimated that the typical military sensor

system takes between three to eight years of development and testing before it is fielded

to operational units [23]. In comparison, commercial sensor systems that are developed

in a more competitive environment are fielded in one to two years. The primary goal of

the ADAPT program is “To deliver common hardware and software that can be quickly

configured to perform a variety of mission-specific ISR applications” [23]. The ADAPT

 18

program achieves this by focusing on a reusable hardware core, reusable software, and

sensor-specific applications. The reusable hardware core is of interest because it utilizes

already-available low-cost commercial components and is capable of being upgraded as

the state-of-the-art advances. The reusable software addresses issues of processing,

storage, navigation, communication, and orientation, which are common to a wide array

of sensor systems and could be reused many times over. Currently, sensor development

requires that generally unique hardware and software be developed for their

implementation. Sensors created through the ADAPT program would utilize more

modular and reusable hardware and software; the driving factor for sensors, packaging,

and components will be the needs of the mission that calls for their use. Through

DARPA’s research, researchers have developed a prototyped WSN capable of

autonomous network formation, object tracking, and propagating track information

throughout the network, while keeping the cost per node less than $1,500 [23].

Leading up to the ADAPT program, DARPA spent considerable time investing in

WSN research, as evidenced by programs like SensIT, Smart Dust, NEST, and TinyOS

[24]. Arguably, such research started with the distributed sensor network (DSN)

program, which began in the 1980s [25].

3. Single Board Computers

As predicted by Moore’s Law [26], the number of transistors able to be embedded

onto a chip increased rapidly during the period beginning in the 1960s and continuing

into the 21st century. In the early 2000s and into 2014, a number of individuals

capitalized on the availability, affordability, and the shrinking size of processors to create

tiny, single board computers (SBCs) and microcontrollers geared toward students and

hobbyists. The first of such products, the Arduino, was released in 2005 by an Italian

startup and meant for use by students learning electronics at the Interaction Design

Institute Ivrea [27]. The Arduino was a 32-bit, 16-MHz microcontroller with 14 digital

input/output pins [28] and could be purchased for approximately $30 U.S. [27]. All

hardware and software were kept open-source [28]. What made the Arduino unique was

not only its small size and low-cost, but also its ease of programming and ability to

 19

control a large variety of commercially-available sensors [29]. This made it a suitable

candidate for potential inclusion into prototyped WSNs.

In 2012, the Raspberry Pi, an SBC with an Arm-Processor running Gnu/Linux

also designed for students and hobbyists, entered the market selling for only $25 each

[30]. The Raspberry Pi was the size of a credit card, had the ability to connect to a wide

variety of peripherals to include Wi-Fi adapters and cameras, and had enough processing

power to play high-definition video [31]. The Raspberry Pi proved to be extremely

versatile and was utilized in a variety of applications to include webservers [32] and low-

cost surveillance systems made of commercially-available components [33].

Other commercially manufactured SBCs capable of being networked and

interfaced with sensors included the BeagleBone [34], the BananaPie [35], the Android

MK802 [36], Via APC [37], and the Intel NUC [38]. Some companies combined

microcontrollers, mini computers, and sensors into do-it-yourself kits for hobbyists—

Ninja Blocks was one such company that combined the BeagleBone, Arduino, and a suite

of various sensors into a kit for building custom, automated home security systems at a

price of $199 [39]. The growing availability of SBCs and microcontrollers capable of

being interfaced with cheap commercial sensors and various networking components

offered exciting opportunities to rapidly build robust WSN prototypes, custom-tailored to

satisfy fine-grained military use-cases, to include automating the LP/OP.

4. Node.js

Node.js was a software platform for creating networking applications. This

framework was ideal for network programming, where multiple clients requested a

service. Its strength was the speed in which requests were serviced. This speed was

derived from its asynchronous nature, where requests were handled on a single-threaded

event loop. Node.js was built on top of Google’s V8 JavaScript engine, which compiled

JavaScript instructions to machine code. A growing community of web developers and

industry leaders migrated to this platform for the high performance Node.js offered [40].

Due to this increased following, the community developed a large code base of modules,

which aided in the rapid development of networking applications. This technology is

 20

relevant to the problem of automating the LP/OP through the use of WSNs because of its

ability to serve high performance real time applications that are suitable for use on mobile

devices, thus enabling a robust user interface to the system.

5. Responsive Design

As the number of mobile, handheld, and tablet devices increase,

developers/designers face an ongoing challenge to effectively deliver their web content to

the user. In light of this shift toward using mobile devices to access web content, the

initial instinct of developers was to design an independent “m.domain” site that would be

served to all mobile devices [41]. Developers quickly realized the challenge in

maintaining two separate web sites, as well as the significant challenge of getting the

content to display correctly for any device, screen, operating system, and browser.

Responsive web design (RWD) purports to address these problems and has garnered

considerable attention from the web development community since 2010. This is an

interesting concept for military applications, since all too often products are developed

for the military utilizing proprietary technology/contracts that ultimately pigeonhole the

military in a position that may not be the most beneficial solution for the long-term. This

freedom of having a “one size fits all” mentality allows the application to be served to a

wide variety of devices, giving commanders and troops the ability to decide what

platform is best for the mission.

Ethan Marcotte first coined RWD on May 25, 2010, when he wrote a seminal

article on the fundamentals of the concept [41]. The overarching idea can be best

encapsulated by his statement, “This is our way forward. Rather than tailoring

disconnected designs to each of an ever-increasing number of web devices, we can treat

them as facets of the same experience. We can design for an optimal viewing experience,

but embed standards-based technologies into our designs to make them not only more

flexible, but more adaptive to the media that renders them. In short, we need to practice

responsive web design” [41]. This article introduced the three building blocks of RWD

as fluid grids, flexible images, and media queries. Through the use of these tools, in

designing web applications, it has become possible to serve content to a wide variety of

 21

devices ranging from mobile to desktop, without losing the importance of the intent and

content of that information—even when viewed on small screens.

6. Military Push for Mobile Device Applications

Though the United States military recognizes that there are still security

vulnerabilities to overcome with wireless communication, it is accepted that the future of

military computing will embrace the mobile domain [42]. “The Army Cellular

Capability Development Strategy,” released in 2011 by the U.S. Army Signal Center for

Excellence, presents a vision where cellular technology is heavily utilized for battlefield

communications, with smartphones being the workhorse for a multitude of combat tasks

by different levels of leadership. Such a future strategy would “leverage commercial

communications infrastructure for units both in garrison and while operationally

deployed” [43]. The Army has even established a course for soldiers to learn how to

write smartphone applications for military use [43].

While the Department of Defense has recognized the ubiquity of mobile devices

and networking and has taken steps toward embracing the technology, it still faces

significant challenges in implementation beyond security concerns. One of the biggest

difficulties is the difference in devices that are used. There is not a single type of

platform that the military has chosen to utilize at all times [43], and this multitude of

devices complicates the development of new applications. Operators may utilize

Android, iOS, or BlackBerry devices. Tablet and smartphone variations of these devices

also exist, often with different screen sizes and device characteristics. These differences

complicate the development of new applications, and it is a significant challenge to allow

the widest degree of cross-compatibility among devices, especially since developing for

these different platforms requires knowledge of different programming languages.

In order to reduce labor requirements for development and to allow the greatest

cross-compatibility, code that can be written once and utilized across devices is highly

desirable, and HTML5, an Internet markup specification, can possibly meet this need by

providing a common development language [43].

 22

D. SUMMARY

This chapter has shown how the application of wireless sensor technology to the

tactical support of ground troops in combat has been limited. Existing sensor systems are

too expensive for widespread deployment by infantry units, too complex to be utilized

directly by the warfighter, and not capable of being monitored without specialized

equipment that places a further weight burden on the already overloaded infantryman.

This chapter has also highlighted key technology capable of providing a solution to this

problem, showcasing the drive of the United States military toward the use of mobile

devices for battlefield communications tasks. In Chapter III, the concept of a wireless

sensor system for use by the infantry squad conducting an LP/OP is presented. This

concept explores leveraging COTS components to build a cheap, effective, and highly

usable system for increasing the situational awareness of infantrymen through computer

automation.

 23

III. MOBILE SITUATIONAL AWARENESS TOOL CONCEPT
DESIGN

This chapter introduces the infantry task of conducting the LP/OP for unit security

in combat. It discusses the challenges and limitations that units face when using this

technique. Next, it closely examines Marine Corps requirements for conducting the

LP/OP and then the historical lack of automation for LP/OPs, especially in light of

advances in technology and the direction the armed forces are taking with respect to

mobile computing. It then explores the requirements for automating the LP/OP, and

presents a concept for an automated solution including the sensor nodes, the application

server, and the mobile devices required for such a system. Following this, the chapter

suggests a number of possible use-cases for such a system, with proposed tactics,

techniques, and procedures (TTPs) for employment. Finally, it proposes how such a

system could be incrementally tested as it is built.

A. PROBLEM DESCRIPTION

1. Utility of the LP/OP

The LP/OP has served the vital function of being the eyes and ears of combat

leaders since the earliest days of human conflict, buying a force precious time to react to

enemy maneuver by providing early warning of intrusion into a geographical area of

interest [9]. The LP/OP offers a simple trading of time for space; by positioning troops

forward of friendly lines with the task of watching for enemy movement, advanced

knowledge of enemy activity is learned. This advanced knowledge then drives the

combat leader’s own scheme of maneuver, allowing for the repositioning of personnel

and weapon systems in order to more effectively engage the enemy. Additionally,

because LP/OPs are positioned to best observe enemy troop movement, the LP/OP can

potentially arrange indirect fires, such as artillery and mortar fire [44]. This requires that

the LP/OP have personnel trained in the call for fire procedures (CFF) and have a real-

time communications capability, either through radio or field phone, with the element

 24

providing fires [44]. Indirect fires have the added benefit of buying even more time for

the combat force through disrupting and delaying a maneuvering enemy.

2. Limitations of the Traditional LP/OP

The utility of the LP/OP is apparent, but executing this tradeoff of time for space

comes at a considerable cost to a combat force, and there are also several risks that the

combat leader must mitigate. Operating LP/OPs requires considerable planning by

involved leadership. Leadership must create a rotation schedule in order to keep LP/OPs

continuously manned with fresh troops [7]. This rotation schedule is vital in order to

ward off fatigue and boredom, which causes inattention by LP/OP operators and degrades

the effectiveness of their position [45]. This inattention can lead to the operators

themselves becoming vulnerable to sneak attacks by the enemy. The rotation schedule

can be difficult to integrate into the overall security schedule of the main body of troops

and is furthermore difficult to optimize for the greatest amount of rest. Adding more

LP/OPs to the battle plan only compounds the complexity of the problem.

Regardless of the efficiency of the rotation schedule, LP/OPs demand a greater

aggregate amount of work for the executing unit, which adds to combat stress, fatigue

and risk. Since a combat unit must constantly maintain a ready posture, removing troops

from the local security rotation to man the LP/OPs shortens rest cycles and more quickly

fatigues the unit. In addition, moving back and forth between LP/OPs and main battle

positions requires further exertion. This movement can also draw attention from the

enemy and expose friendly forces to enemy fires. Further risk is caused by the threat of

fratricide when forces are positioned forward of friendly battle positions, as is the case

with the LP/OP. Mitigating potential fratricide requires additional planning—leaders

must plan their fires with LP/OPs as a major consideration [7]. The presence of LP/OPs

can potentially constrain the fires of friendly forces engaging the enemy if the LP/OP is

positioned within the danger area of friendly fires, thereby limiting the combat power of

the force.

In addition to the risk of fratricide, the LP/OP carries the additional risk of being

cutoff from friendly forces. This risk is owed to the fact that the LP/OP is positioned

 25

forward of friendly units and is therefore more easily isolated. Being cut off from

friendly troops and support could result in the destruction of the LP/OP or the capture of

occupying personnel.

Finally, since the LP/OP manning is drawn from the main body of the friendly

force, the combat power available to be massed on the enemy by that force is diminished.

These disadvantages exist for a common reason: human beings man the LP/OP.

As human beings become fatigued they stop paying attention; they must therefore rest.

Human beings are vulnerable to friendly and enemy fire, and can be captured by the

enemy. Human beings must eat, drink, and eliminate waste, which can attract enemy

attention. They also may become bored and demoralized when isolated for long periods

of time, which degrades combat performance [46].

3. Formal Marine Corps LP/OP Requirements

In order to build a system that automated the functions of the LP/OP, it was

necessary to first precisely define the functional requirements of the LP/OP. To do so, we

examined relevant Marine Corps warfighting publications.

The Marine Corps Infantry T&R Manual precisely defines the requirement for the

infantry fire team to conduct a LP/OP [7]. This task requires that the Marine infantry fire

team “provide early warning while seeking to avoid direct enemy contact” as part of

defensive operations, both day and night. This formal requirement states that this task

must be accomplished while "supporting a defensive scheme of maneuver during daylight

and limited visibility.” Limited visibility, in terms of tactical situations, is meant to be

any condition that would degrade the visual acuity of military personnel. Such conditions

include darkness at night, adverse weather conditions (e.g., rain, snow, sandstorms), or

observation-limiting terrain such as heavy vegetation, dense urban structures, or micro

terrain (e.g., hills, draws, valleys, or depressions) that interfere with line of sight [7].

According to this standard, executing the LP/OP consists of many critical

components. The LP/OP must be planned; it must be resupplied; and it must maintain

communication with higher headquarters. It should also report critical information when

 26

observed. It must maintain its own security and there should be a plan to break contact

with the enemy and move back to friendly defensive lines, which requires coordination

for the passage of friendly lines [7].

MCWP 3-11.3, Scouting and Patrolling [47], an authoritative Marine Corps

publication on small-unit infantry operations, provides further guidance on the proper

execution of the LP/OP. In choosing the location of the LP/OP, the site should not be

prominent and therefore obvious to enemy forces [47]. OPs should also not be manned

for more than 24 hours; however, in practice they are frequently manned for longer

periods of time due to the work required in constructing a new position. LP/OPs should

be occupied and exited using diverse and concealed routes. Observers in the LP/OP

should utilize all pertinent senses, to include sight, smell, and hearing, to discover and

report enemy activity.

The information to be reported regarding the enemy by the observers is a critical

component of every LP/OPs mission. Every situation will dictate independently what

unit leaders want observed and reported. The NATO spot report (SPOTREP) provides a

standard used by Marines to report enemy activity [47]. The SPOTREP describes the

size and strength of the enemy unit being observed, the actions of this enemy, their

location, the enemy unit (identification), the time of the enemy observation, and the

equipment and weapons being utilized by the enemy collectively referred to as

Size/Activity/Location/Unit/Time/Equipment or SALUTE. This acronym, SALUTE, is

widely used at the small-unit level whenever there is a need to thoroughly describe the

nature of the current enemy [47], such as when a unit leader briefs his Marines in an

operation order on the nature of the enemy they will face.

MCWP 3-11.2, Marine Rifle Squad, also provides information on the LP/OP [48].

This source gives a metric on the distance from friendly lines that an LP/OP should be

employed while the unit is in a security posture. The prescribed distance is 460 meters,

which is approximately the maximum effective range of the M16/M4 battle rifle

employed by the majority of infantry Marines.

 27

4. Historical Lack of Automation

The LP/OP has undergone minimal automation despite often being supplemented

by tools that allow enhanced perceptual abilities [47], such as telescopes and infrared

optics. These supplements have not significantly reduced the human involvement in the

conduct of the LP/OP, as most continue to require perpetual human monitoring.

As discussed in Chapter II, the United States military is embracing the ubiquity of

mobile computing in the civilian sector and exploring methods of adopting this

technology to automate various battlefield tasks. Local surveillance and security, the

kind provided by troops conducting LP/OPs, should be one of these tasks aided by the

growth of mobile device use within the military.

5. Requirements for an Automated LP/OP

We utilized authoritative Marine Corps publications for identifying the primary

requirements of a system that would automate the LP/OP. The system should be capable

of detecting an enemy in sufficient detail so as to satisfy the requirements of the

SPOTREP and SALUTE; it must be able to do so both during daylight and in low-light

conditions. To accomplish this task, the system should be capable of utilizing multiple

sensing modalities similar to the way Marines use multiple senses to detect hostile

activity. Additionally, the system should be able to report the SPOTREP in near real-

time to the employing unit leader so as to provide actionable information. Furthermore,

the system needs to be inconspicuous so as to avoid enemy detection.

We identified further critical requirements for designing an automated LP/OP

system, not found in the Marine Corps formal publications. First, the system would have

to be cost effective to be fielded in quantities large enough for widespread use throughout

the Marine Corps’ infantry units. The strategy for achieving this low per unit cost would

be to utilize COTS rather than building expensive, specially designed hardware and

software.

Second, the system would need to be easy to learn and utilize, requiring little time

for the average Marine rifleman to become proficient with its employment. Infantrymen

must learn and maintain proficiency in a wide variety of skills, and therefore extra time

 28

for training is scarce. Most infantrymen have little training in sensor system employment

and operation; this system should not place an extra training burden on the infantry unit.

Ease of use would also ensure the ability for the widest possible group of infantrymen to

use the system, thus enabling great flexibility in its employment. In order to accomplish

the highest level of usability, the user interface (UI) of the system would need to leverage

the widespread familiarity with commercial mobile devices that has accompanied the

boom in smart devices (i.e., tablets and smartphones) and the accompanying popularity of

such devices amongst young service members [43]. Therefore, the design should mirror

the “look and feel” of applications commonly found in the civilian market and utilized by

Marines in their personal lives. Also, with the predicted proliferation of mobile devices

on the battlefield [43], the system should be capable of interfacing with the widest variety

of mobile devices.

Third, in order to network the COTS components of the system together

effectively, we determined that system components should utilize the ubiquitous

Transmission Control Protocol/Internet Protocol (TCP/IP). This would allow connecting

the widest possible variety of parts and the possibility of later augmenting or substituting

pieces of the system with other IP-compatible sensors or components, as well as

incorporating new types of handheld monitoring devices (i.e., new models of

smartphones and tablets). Also, utilizing TCP/IP and COTS parts would allow for the

fastest development of a prototyped system, the ability to make timely improvements,

and for the rapid adaption of the system to satisfy changing mission requirements.

Fourth, the system as a whole should be practical for dismounted infantrymen to

carry and employ. With the average infantrymen carrying more than 60 pounds of gear

in his combat kit [49], the system would have to be as light and portable as possible. Due

to constraints on power, the system should also have its own power source; weight

limitations would limit the amount of power available to the system. The system should

have enough power to have a practical life span in the field, meaning it should be able to

be continuously operated for a significant number of days with only its onboard power

source.

 29

Finally, in order to be practical for use by the warfighter in stressful combat

situations, the system should be as autonomous in operation as possible, meaning very

minimal effort would need to be required on the part of the human operator to initialize

the sensor network and maintain its useful operation. A self-configuring, ad-hoc network

of sensor nodes was therefore preferred. In short, the system should be easily networked,

cost-effective, limited learning curve, easy to use, extremely portable, long endurance,

highly autonomous, and have an extensive effective field of view.

B. CONCEPT FOR AN AUTOMATED SOLUTION TO THE LP/OP

1. Problem Solution: Proposed Architecture

Here, we propose the MSAT, a system for automating the LP/OP thereby

reducing the manpower burden for an employing unit. This system would leverage

powerful modern computing technology, and should be able to be implemented at the

lowest levels of combat units within the military due to its low cost and ease of use. Such

a system consists of sensor nodes, an application server, and mobile devices for

interacting with the system.

a. Sensor Nodes

To build MSAT, a sensor node is needed that can perform as the backbone of the

system, acting as the primary means of alerting the operator to enemy activity. The

sensor node itself must satisfy several specific criteria in order to be a viable option for

incorporation into the system. First, the sensor node must contain sensor modalities

capable of intrusion detection into a tactical area of operations (TAOR) and target

classification upon detection specific enough to satisfy the requirements of the

SPOTREP. We determined, through research of modern sensor system implementations,

early in the planning of the system’s design that the most useful sensors would likely be

passive infrared (PIR) sensors, cameras, seismic sensors, and acoustic sensors, as well as

a global positioning system (GPS) receiver for determining sensor location.

Second, a system that already had a threat classification algorithm in place (i.e.,

the ability to track targets through the sensor field) would be preferred. Furthermore,

 30

processing should be done locally (i.e., onboard the sensor nodes) rather than centrally, in

order to support expanding the number of nodes without putting strain on the entire

network due to increased packet transfer and latency due to insufficient bandwidth across

the network. A scalable network that can survive the destruction and addition of nodes,

without disruption and failure, is important when considering combat applications.

Third, the nodes would need to be capable of reliably communicating tracking

information to the system operator utilizing an intuitive UI. To do so, the sensor node

would need to utilize the TCP/IP protocol to transfer data packets, thus enabling threat

and tracking information to be transferred to a monitoring device, in the hands of an

infantryman, that displays the sensor field updates on a suitably designed UI.

Fourth, the sensor nodes would need to be capable of autonomous network

formation for ease of use in combat. Network formation and operation should be

decentralized in order to increase the survivability of the system in the event of

destruction by hostile forces. Further, the network of sensors should be as impervious of

exploitation by the enemy as possible should nodes be captured or the network

interconnecting the nodes by detected and monitored by the enemy.

Fifth, the overall system would need to be inexpensive enough to be fielded in

large numbers by infantry troops and in quantities great enough to enable useful

battlefield automation down to the tactical level. The sensor node itself would also need

to be inexpensive, preferably significantly cheaper than the purpose-built sensors

currently used by military.

Finally, the nodes would need to be light enough to be carried over long distances

by dismounted infantry, who themselves would likely be carrying heavy personal combat

loads. They would also have to utilize wireless communications so as not to force the

warfighter to manage unwieldy cables between nodes. The nodes would also need to

utilize an internal power source and have a life-cycle of at least fourteen days in order to

be utilized tactically in combat.

In light of these criteria, a variety of options were examined for possible use. The

first was creating custom sensor nodes that would satisfy the above requirements utilizing

 31

commercial SBCs (e.g., RaspberryPi, BeagleBone), microcontrollers, and different types

of sensors. This method would require intensive hardware design and engineering and

the creation of complex communication protocols that would enable the nodes to

establish an ad-hoc wireless network and autonomously share information between

nodes. Though it was believed possible, the level of complexity required for these tasks

was determined to be outside the scope of this thesis. Thus, existing hardware requiring

little modification would be required for use in the MSAT system.

In summary, we sought a sensor node system that incorporated multiple onboard

sensor modalities to perform a locally executed threat classification algorithm, capable of

autonomous network formation and decentralized operation, with the ability to interface

with a variety of handheld devices through the ubiquitous TCP/IP protocol. Additionally,

the sensors needed to be low-cost for widespread use throughout the military, lightweight

to facilitate portability, and wireless in order to be practical. Finally, the sensors should

have an onboard power source making them capable of operating in the field for 14 days.

b. Mobile Devices

The United States military has increasingly used mobile devices in training and

operations, and the Army plans for these multi-purpose personal handhelds (e.g.,

smartphones and tablets) to take a central role in battlefield communications in the future.

There has been a movement to develop many different applications for use on these

devices to satisfy varying mission requirements [43]. Though the military recognized the

utility of mobile devices and the importance of developing applications for these devices,

they did not decide upon a single model, make, or operating system to employ in all

cases. Therefore, running the same software application across a diversity of devices

presents itself as a major challenge. This challenge is due to the fact that different types

of devices are programmed in different programming languages—for example, most

native Android applications are coded in Java, while most iOS applications are coded in

C# [43]. Also complicating the task, devices may have a different operating system, or

operating system version, and hardware characteristics that make running a universal

application complex.

 32

Recognizing the multitude of different devices on the market today and in use

across the Department of Defense, we decided that we wanted the MSAT system to be

compatible with the widest range of devices. Due to hardware and operating system

differences already identified, the task of creating separate native applications for the

myriad of devices was determined to be an impractical approach for our research.

Instead, we wanted to be able to write our program once and have it run on the majority

of mobile devices. “Write once, run anywhere” is a commonly referred to goal in

software engineering and the introduction of HyperText Markup Language 5 (HTML5) is

purported to assist web developers in achieving that goal [50]. To promote

interoperability between the widest variety of mobile devices and the sensor network a

web-based user interface was proposed. A web-based front-end would enable the

greatest possible code reuse and achieve compatibility with both Apple and Android

devices while limiting the impact on development manpower resources. This cross-

platform capability comes from standards implemented across Internet browsers that exist

on mobile computers [43]. Web applications written in HTML5 have the capability for

both online and offline application operations [43]. The overall layout proposed is a

web-based interface written with HTML5, utilizing both JavaScript for functionality and

cascading style sheets (CSS3) for styling. Based on our research of web development

and the ease of accessibility to online communities and resources, we decided that a web

application would be the most appropriate design for MSAT.

The user interface to the system would need to enable the greatest possible

usability for operators in stressful combat situations, and provide the greatest degree of

situational awareness. A usable system for our military use case would be appropriately

defined as, “the effectiveness, efficiency, and satisfaction with which specified users can

achieve specified goals in a particular environment” [51]. This would need to be

thoughtfully considered throughout the developmental process, so that the focus would be

maintained on the end user, the infantrymen, who would utilize the tool.

The user interface to MSAT should facilitate the greatest degree of situational

awareness possible on the battlefield. To enable this, the main component of the

interface would need to be a map. The map should be capable of being scrolled, zoomed,

 33

and rotated, similar to the capabilities of a variety of mapping applications available on

the Internet today. Next, the interface would need to overlay sensor nodes on the map.

Finally, the interface should give alerts to the operator of threats in the sensor field. To

communicate intrusions into the sensor field, the interface would need to display visual

indicators of intrusions, such as flashing graphics where intrusions occur, or lines

displaying the tracks of targets moving through the area. Redundant alerts would

enhance monitoring capabilities; thus, audible alarms and vibration would be

incorporated whenever possible, with the option of turning these features off if the

tactical situation called for their silence. To allow threat classification through use of the

system, a pop-up window would provide video or still images of intruders, in addition to

other information regarding the target provided textually that the system can possibly

provide using its multiple sensors and threat classification algorithms.

Additional features of the user interface would contribute to enhancing situational

awareness. The system would track and plot friendly positions on the map graphically.

The system would also provide chat functionality for communicating with adjacent team

members and units. This would be useful for communicating enemy information gleaned

from the system to friendly forces.

Figure 2 depicts a proposed wire/straw-man frame of what a usable interface

would look like for the MSAT system, utilizing all the concepts that were previously

discussed as requirements for the system.

 34

Figure 2. UI Wire Frame

The wire frame aids a web designer in articulating a vision of what the product

may look like. Our focus is on maximizing the real estate of the map layer (i.e., gray

background) and to keep reoccurring tasks, integrated as buttons, in the corners of the

web application so that they are easily accessible by the user and not a hindrance to the

users’ observation of the sensor field. Once a button is triggered, the resulting action is

imitated by a dashed line with an arrow, which shows where the pop-up container will

populate on the screen and the title of its content.

c. Application Server

In order to facilitate the write once, run anywhere philosophy of the web

application written in HTML5, JavaScript, and CSS3, an application server would have

to be implemented through the use of an already existing web server application code

base or the creation of a custom one. Another anticipated requirement is that in order to

 35

serve the application’s dynamic content to user devices, an application server must be

capable of receiving and responding to Asynchronous JavaScript and XML (AJAX)

requests. AJAX can be best viewed as a group of tools that allows asynchronously

updating user web pages. These tools include: standards based presentation through

CSS3, dynamic display and interaction through the Document Object Model (DOM),

data interchange and manipulation using XML (Extensible Markup Language),

asynchronous data requests through the XMLHttpRequest object, and JavaScript which

brings all these together through its multi-paradigm programming language [52].

d. Overall System Design

Figures 3 and 4 illustrate the proposed logical and physical network topology.

Figure 3. Logical Network Topology

The logical topology depicted in Figure 3 illustrates the data flow that occurs

from the sensor field, through the application server, and ultimately to the client device.

 36

This is a high level view that suggests what possible technologies that may be applied to

the MSAT system.

Figure 4. Physical Network Topology

The physical topology depicted in Figure 4 highlights the interconnections that

may occur from the sensor field, through the application server, and on to the tactical

client’s device or to the remote client’s device. This, like the logical topology diagram, is

a high-level view depiction of the technologies proposed for the architecture of the

MSAT system.

2. Possible Use Case and Employment

Here, we present several potential use-cases for the proposed MSAT system,

covering a diversity of common combat scenarios faced by infantry units.

 37

a. Ambush

Utilized by an infantry unit conducting an ambush, MSAT would provide early

warning of an approach, into the sensor field. It would also provide the direction of

approach and possible disposition, depending on the number of discernable tracks

created. This would aid in the prevention of the erroneous triggering of ambushes, by

neutral or friendly forces, through early notification of an intrusion in the sensor field and

allowing the human to make a classification, via camera, earlier.

 Utilized in an ambush role, as shown in Figure 5, sensor nodes would be placed as

far out as possible on the flanks of the ambush position to facilitate the earliest warning

of enemy presence. Additionally, nodes would be placed in the staging area, doctrinally

known as the operational rally point (ORP), where extra equipment is often dropped by

the unit and is the site for linkup after actions on the objective. The ORP may be left

completely unmanned, and sensor nodes would give warning of enemy compromise of

the position.

Ambushes can require units to occupy ambush positions for long periods of time

while waiting for an enemy whose time of arrival is uncertain. This can result in

boredom and complacency that leaves a unit unprepared when the enemy does arrive.

Sensor nodes that alert personnel to enemy presence early through a user interface on a

handheld device can refocus the attention of the entire unit, and use of the chat can allow

for last minute coordination within the unit without breaking the silence an ambush

necessitates.

 38

Figure 5. Ambush Scenario

b. Reverse Slope Defense

A reverse slope defense utilizes the concept of mass surprise fires to destroy the

enemy by drawing him into an engagement area that silhouettes him against the slope of

a hill after crossing an inter-visual (IV) line or ridgeline. This IV line (shown in the gray

lined area) prevents the unit conducting the defense from visually observing the enemy

before he enters the engagement area. To provide early warning of an advancing enemy,

sensor nodes can be placed on the other side of the IV line. This avoids the necessity of

placing personnel forward of the IV line and beyond supporting arms range of friendly

forces, and possibly also masking friendly fires upon enemy contact. Three squad battle

positions are depicted in Figure 6. They are focused on engagement areas, which are then

mutually supported by sensors.

Enemy
Engagement Area

Support Assault

Staging Area

 39

Figure 6. Reverse Slope Defense Scenario

c. Urban Defense

Small units can establish defensive positions in urban environments. Such

environments are characterized by tightly-packed, multi-storied structures that create

covered and concealed avenues of approach. Alleyways, sewers, trenches, rubble from

damaged buildings, and rooftops can all be utilized by a clever enemy to safely close with

friendly forces, where fragmentation grenades can then be thrown into friendly positions

without ever having to expose themselves directly to small-arms fire. Sensor nodes could

be littered, possibly covertly with special operations forces or overtly using indirect fire

techniques leveraging the robustness of the UGS device design, through these areas to

give forewarning of such enemy infiltration before coming within hand-grenade range.

Shown in Figure 7 is a platoon battle position, in an urban environment, that is supporting

its position by employing the sensors in the surrounding dead space (i.e., unobservable

from the friendly position).

 40

Figure 7. Urban Defense Scenario

d. Tactics, Techniques, and Procedures for Employment

In order to effectively employ the sensor field, unit leaders will conduct a

reconnaissance of the area, prioritizing node placement based on dead space locations

(i.e., unobservable terrain), likely avenues of approach, and natural lines of drift (i.e.,

terrain’s tendency to influence movement). Patrols would then be dispatched to emplace

the sensor nodes in their desired locations. Patrols should be organized into two

elements—the node emplacing team and the security element. The node emplacing team

will consist of at least a buddy pair—one individual carries the sensor nodes in a load-

bearing pack, while the other retrieves the nodes from the pack and actually emplaces

them. The security element provides protection and over-watch for the emplacing team,

preventing enemy interference with the node emplacement.

 41

3. Testing Plan

We use an incremental approach to testing the MSAT system, where the

individual components of the system are tested, as they are developed. First we focus on

the sensor nodes’ ability to reliably detect and classify threats and then transfer that data

from the sensor field. Tests are conducted to determine the reliable range in which the

nodes can communicate to each other, to develop repeatable deployments of the system.

The sensor field is tested with various wireless access points, which will provide a means

to back haul the information from the sensor field to the application server. Testing is

conducted with sensor field deployment in different environments (e.g., overhead cover,

thick vegetation, light vegetation, pavement, low grass, and tall grass), to determine best

practices for employing the devices and identify impacts on the system.

Second, we test the application server’s ability to process the node information,

parse the information into a transferable data packet, and handle multiple connections to

clients. The application server is tested, in a lab setting, to determine capabilities of

throughput, as well as the amount of concurrent client connections that can be handled

reliably. The application server is tested as part of the MSAT system, in a field

environment.

Third, we test the user interface and responsive design on multiple devices. The

design is tested with various browsers, devices, and operating systems. This testing is not

meant to be exhaustive of all devices, due to time and monetary limitations, but is

intended to show the capabilities of a RWD that is developed with mobile platforms in

mind.

Finally, we conduct a live field experiment, utilizing the system as a whole. This

will provide an opportunity for operators to employ the system in a military scenario,

with the objective being to determine when a person has entered the sensor field and to

provide a SALUTE report based off the observations.

C. CONCLUSION

In this chapter, we discussed the LP/OP—its uses, its limitations, and its

requirements as set forth by the Marine Corps. We showed how the LP/OP is a

 42

battlefield task well-suited for automation, and how the United States military’s growing

interest in mobile devices on the battlefield can be leveraged to create a flexible tool for

infantry units to conduct surveillance and intrusion detection on the battlefield. The

concept for such a tool, which we coined MSAT, was presented, including the system

components and architecture. Finally, several possible use-cases and methods of

employment were discussed, and a testing plan was laid out. In the following chapter, we

present the actual development of the reference design for MSAT, the detailed test plan

based on the reference design and test results of its individual components, and the

performance of the system in a field experiment.

 43

IV. MSAT IMPLEMENTATION AND TESTING

To show the possibility of using computer systems to automate the LP/OP for

small infantry units, we built a functioning prototype, MSAT, consisting of COTS

components, existing sensor nodes, and custom-built application software. We first

selected an appropriate sensor node to act as the backbone of the system, and then we

tested the capabilities of these sensors before incorporating them into a system that

satisfied our use-case. Next, we built a software application that allowed for warfighters

to interface with the sensors, enabling them to utilize the sensors for surveillance,

intrusion detection, and target classification. We then tested the capabilities of this

software isolated from the rest of the system. Finally, we built a mobile tactical network

that integrated all of the components into a complete system for field use, and we tested

the capabilities of the system in a mock combat scenario.

A. SENSOR NODES

We needed to incorporate sensors into our prototype in order to detect intrusions

in the tactical area of operations (TAOR) and classify these intrusions, alert human

operators using the system and enable them to use the system to gain battlefield

situational awareness. In order to most effectively execute this task, multiple modalities

of sensors would be required, and the sensors would need to be able to communicate

environmental events wirelessly and in near real-time, with minimum effort or training

required on the part of the operator. WSN nodes could accomplish all of this with

multiple onboard sensors capable of autonomous network formation and a protocol for

sharing gathered environmental information across the network, such that the information

could be processed and presented in a human-readable format through a user-interface.

Such sensors would serve as the backbone of MSAT.

Building such a sensor node from scratch would be too complex a problem for the

scope of this thesis. Therefore, we sought an existing solution. The ADAPTable sensor

system (ADAPT) Smart Munition prototype, built by DARPA, provided an acceptable

solution and was therefore utilized as MSAT’s sensor node.

 44

1. ADAPT Smart Munitions

The ADAPT Smart Munition was born out of ADAPT, a DARPA program that

began in 2012 with the purpose of building UGS systems of COTS technology that could

serve as an intelligent replacement to conventional munitions, such as cluster bombs and

minefields [53]. Such nodes would be capable of autonomous network formation and

communication with command and control (C2) assets, after being hand placed,

airdropped en masse, or delivered via artillery fire. We decided to utilize this prototype

sensor in a manner other than originally intended by DARPA, by integrating them into

our system and using it as the key technology of MSAT to directly support the infantry

warfighter at the tactical level for surveillance purposes.

2. ADAPT Sensor Node Prototype Specifications

a. Core Hardware

The ADAPT Sensor node was built around the ADAPT core, a breadboard

containing a Qualcomm MSM8960 Snapdragon System-on-a-Chip Dual Core processor,

graphics processing unit, GPS Processor, and 3G/4G modem [53]. Cellular, GPS, Wi-Fi,

and Bluetooth antennas were also integrated into the ADAPT core. The processor is

capable of running at 1.5 GHz per core [54]. The ADAPT board utilizes a removable

MicroSD card for persistent storage [53]. Various views of the sensor node are provided

in Figure 8.

 45

Figure 8. ADAPT Sensor Top, Side, and Cutaway Views, from [53]

b. Sensors

The ADAPT node contained a collection of different sensors. Each node utilized a

PIR positioned at the front of the housing, capable of detecting intruders from a range of

a few meters out to approximately 50 meters for larger targets such as a vehicles, and out

to 20 meters for smaller targets such as human traffic.

Additionally the ADAPT sensor node contained a physical tripwire. The tripwire

was held in place magnetically to the side of the node housing, and the wire, which was

made out of string, could then be unraveled to its desired length. The tripwire system

was designed so that when the tripwire was disturbed, the magnet connected to the end of

the wire would pull apart from the magnet on the node, and the actuator would trip,

causing a detection event on the node.

 46

The ADAPT sensor node also contained two seismic sensors, an acoustic sensor,

and two cameras mounted on opposite sides of the sensor node. The cameras were

intended to be utilized for the capturing of still images and video.

c. Housing

The ADAPT sensor node consisted of a cylindrical, hard plastic housing with a

radius of approximately 2.5 inches and a height of approximately 4 inches. Rubber seals

were used at all of the connections, where the plastic components met, in order to make

the nodes water-resistant.

d. Operating System

Each ADAPT node ran a version of the Android operating system custom built

for the ADAPT program, optimized for low-power consumption in order to increase the

operating lifecycle of the nodes. This modified, headless Android operating system was

built on top of the Linux kernel, and utilized components built with the C programming

language [53].

e. Node Software

Software running on the operating system of the ADAPT sensor nodes enabled

the key functionality. The Shared Information Space (SIS) process enabled data sharing

between nodes, through the running of a small-footprint database. The Scheduler and

synchronous/asynchronous (SAS) medium access protocol processes were responsible for

ground radio communication between nodes (i.e., the medium access control (MAC)

policy). The RTC Real Time and System Clock Synchronization was a process

responsible for clock management. Other applications were responsible for other key

tasks: loc computed node locations, pir was responsible for running the PIR sensor while

libpir.so handled detection data from PIR-triggered events, seismic processed events from

the seismic sensors, and libtrack.so handled tracking data.

Additionally, the operating system contained drivers for the field programmable

gate array (FPGA), the 900 MHz ground radio, the geophone, and the PIR sensors. An

 47

important note is that a functioning driver for the video cameras on the nodes did not

exist [53].

f. Power Consumption and Duty Cycle

The ADAPT nodes were powered by rechargeable lithium-ion battery packs

housed at the bottom of every node. The Android operating system allowed for power-

aware operation, and the management of different power states in an effort to conserve

energy. The ADAPT node operated with six different states of power usage.

The nodes were intended to spend most of their time in the vigilant power state,

defined as having the PIR sensor enabled, the processor sleeping, and the ground radio

listening on only one receive slot. In this state, the nodes simply wait for an intruder to

enter the field and listen for events from their neighbors. While doing so, the nodes

consumed 80 mW and were capable of operating for an estimated 62.5 days.

In the characterization state, the node had its PIR sensor on and also turned on its

seismic software for classifying threats. This more-aware state was entered when

neighbor nodes transmitted knowledge of local intrusions so that the sensor node could

be ready to more quickly detect and characterize threats. In this state, the sensor node

was also listening on one receive slot. The sensor nodes consumed 412 mW and could

operate an estimated 12.1 days continuously in this state.

The nodes entered the tracking state after the PIR sensor was tripped by an

intrusion. In this state, all of the sensors were turned on, Wi-Fi was enabled in order to

relay information directly back to the monitoring station, and the ground radio broadcast

slots were utilized in order to transmit detection and tracking information directly to

neighbors via the SAS protocol, discussed in the section below. In tracking mode, the

ADAPT nodes utilized 568 mW of power and could operate for an estimated 8.8 days

continuously.

On the node’s initial startup, it would enter the GPS-on state. This state would

stay active for one hour, to allow for the network to stabilize and acquire locations for all

the neighbor nodes. Periodically, the node would activate its GPS-on state for ten

 48

minutes, every four hours. In this state, nodes used 804 mW of power. If the nodes were

in a GPS denied environment, they would derive a center of mass calculation from

neighbor nodes.

In the video-on state, which the ADAPT nodes entered after beginning to track an

intrusion so that video or images could be used to capture the target and be transmitted

back to the base-station for use in classifying a threat by a human in the loop, 1556 mW

were consumed by each node. Nodes in this state also had all of their sensors running,

their Wi-Fi enabled, and utilized their ground radio broadcast slots. They could operate

in this state continuously for 3.2 days.

Finally, in the full power state, defined as the dual-core processor running at full

capacity, all sensors and video on, and all radios being used to simultaneously transmit

packets, the ADAPT nodes utilized 3156 mW of power. It would not be likely that the

sensors would ever achieve this state, but this figure is included here in order to give

perspective to the power consumption of the other operating states. Throughout the

entire testing process with the nodes, they did not run in this hyper-vigilant state, but

were instead in a testing/full mode where all radios were constantly enabled. This

provided an operational lifetime of approximately 1.6 days [53].

3. ADAPT Sensor Node Operation

a. Communication Protocol

Communication between ADAPT nodes was conducted wirelessly via their

onboard 900 MHz ground radios, utilizing the SAS MAC protocol [53]. This protocol

utilized time division multiple access (TDMA) in combination with frequency division

multiple access (FDMA) in order to conduct scheduled communications. This meant that

the frequency spectrum of the SAS radios was divided into sub-frequency slots, and those

slots were further subdivided into different time slots of 4.6 to 8.6 milliseconds in

duration [53]. Nodes, at startup, would randomly select a slot to begin listening on. They

would then scan the other slots and advertise their listening channel. Once a neighbor

introduced them on their listening slot, they would jump to that neighbor’s listening slot

and complete the three-way handshake. After this neighbor establishment has been

 49

completed, the node would then return to a state where they only monitor their slot, thus

reducing the radio duty cycle of the nodes to less than one half of one percent [53],

meaning nodes would use their radio less than one percent of the time, thus saving power

and prolonging the nodes’ life cycles. A depiction of the neighbor formation is shown in

Figure 9.

Figure 9. Network Formation, from [53]

Data was transmitted in protocol data units (Figure 10) of variable length, called

bundles. Each bundle could contain one or more packets of various types and lengths,

but the bundle had a 230 byte limit [53].

 50

Figure 10. Bundle Format, the Data Protocol Unit for SAS, from [53]

b. Network Formation

The ADAPT nodes were capable of autonomously forming a WSN, making them

suitable for use with MSAT since they would not need to be manually configured by

warfighters employing them on the battlefield. To form this WSN, the nodes had to

complete several tasks, to include neighbor discovery, time synchronization, and location

determination.

To discover neighbors after being emplaced, a three-message handshake was

used, shown in Figure 9. The neighbor node completed the handshake, by transmitting a

final acknowledgment. The sharing of already-discovered nodes with new neighbors

during the discovery process was designed to form the network such that an exponential

growth of handshaking was not needed; while nodes would initially have few entries in

their neighbor table, new neighbors would rapidly be discovered through neighbor-

sharing [53]. Each node was limited by the SAS protocol to a maximum of eight

neighbors.

Since the SAS protocol utilized TDMA and communication was scheduled,

meaning that nodes received and transmitted only on a limited number of specific time

 51

slots in order to minimize power consumption by the radio, achieving time

synchronization between nodes was vital. The initial time estimate per node was

achieved through the GPS receiver on the node. This method of achieving an initial time

fix was only partially reliable due to the known inaccuracy of the ADAPT GPS receiver

onboard the node [53]. Therefore, an over-the-air (OTA) time synchronization algorithm

via the ground radio protocol SAS was also utilized [53]. Due to inter-node clock drift,

an algorithm using clock error and clock drift rate fields in the ground radio packet

header enabled the measuring of inter-node clock drift and the resulting necessary time

slot adjustments [53] to ensure the continuing ability to communicate between nodes.

Every four hours, the nodes were programmed to obtain new time synchronization via

GPS or OTA on ground radio [53].

As part of forming the network, nodes needed to obtain position fixes in order to

report their locations to neighbors and any C2 base stations being monitored by human

operators. To be useful, threat and detection data gathered by the nodes also depended on

the nodes accurately obtaining positions. Nodes obtained a position fix in one of two

ways: using the internal GPS receiver or estimation based on neighbor locations. Nodes

with access to GPS satellites would obtain a fix upon being powered on and would

remain in the GPS-on state for an hour, before transitioning to a less frequent GPS check.

In a GPS-denied environment, (i.e., due to being underground, indoors, or jammed due to

enemy activity) nodes obtained estimated locations by conducting a center-mass

calculation using the positions of its neighbors [53].

c. Threat Detection and Tracking

Despite the variety of potential onboard sensors, the ADAPT nodes were adopted

for use within MSAT at a stage in the prototyping process when the nodes relied

exclusively on the PIR sensor for threat detection and tracking. This meant that there was

no software yet developed for utilizing the seismic sensors and there were no functioning

drivers to be able to utilize the cameras.

PIR sensors work by electronically sensing infrared light given off by an object

moving through the sensor’s field of view. Any object, with a heat differential in respect

 52

to the surrounding ambient temperature, moving in front of the node’s PIR sensor would

trigger a detection event. Upon a detection being triggered by the PIR sensor, the node

would process the event—determining whether this detection was part of a sequence of

detections from other nearby nodes (i.e., a track) and which neighbors to share the new

detection with based on sharing-parameters set on the nodes. Nodes were set to send

detection and tracking information with neighbors located within a 100 meter radius of

the event.

Three sequential detections within the local vicinity (i.e., 100 meter radius) would

prompt the creation of a track by the detecting node. A detection by a node with a track

already existing in the local area would prompt the extension of the existing track: the

bearing, speed, and location of which would be processed locally by the detecting node

and shared with its neighbors.

Detection and track timeouts could be adjusted within the SIS database process on

each node, so that nodes would drop detections and track records from their databases

after a certain time period had elapsed. By default, detections were set to timeout after

one minute and tracks after ten minutes.

d. Data Sharing

In the ADAPT WSN, nodes did not have a global knowledge of the network and

only shared data with direct neighbors. This reduced the processing demands that would

have been created should there have been the requirement of maintaining a large routing

table and implementing a corresponding routing algorithm. In order to propagate

information, nodes would only send information to neighbors that the neighbors defined

as interesting. Interesting information was defined as detections within a 100-meter

radius of the neighbor, or a track that had encroached into its area.

Each node maintained the locations of its neighbors, the local detections, and

tracks in separate tables located in the SIS database process running on its operating

system. New information received from neighboring nodes via the SAS ground radio

protocol would be inserted into the appropriate table in the database. Each node also

maintained tables of instructions from its neighbors regarding what kind of information

 53

each neighbor found interesting, so the node would know what information to send to its

neighbors. In such a manner, information would propagate from one edge of the network

to the other, one hop at a time. This precluded the need for a routing algorithm and end-

to-end message addressing. It also resulted in redundant messaging, which provided

network resilience in the face of possible jamming, destruction, or malfunction of

individual nodes [53].

Additionally, nodes configured to utilize Wi-Fi could be programmed to send

their SIS data (detections, tracks, and node locations) over an 802.11 link to the specified

IP address of the base station, via port 10000 on the base station machine. This would

allow for a human in the loop to monitor the entire sensor field. The operator could also

issue instructions to the nodes via the SIS process, such as instructions to perform a

simulated detonation by flashing the nodes’ onboard lights, or to modify tables or data

entries.

4. ADAPT Sensor Nodes Limitations

a. Inoperative Cameras

As previously mentioned, the software drivers that would have allowed for the

use of the two cameras on board each node were not completed. Picture and video could

be captured and stored locally on each node, via a workaround method, but this data

could not be sent over the network to the base station for monitoring in real-time, making

it of little use for surveillance and security.

b. Undeveloped Threat Tracking and Classification Algorithm

Software developed for the ADAPT nodes, at the time of MSAT’s

implementation, only allowed for intrusion detection based solely on PIR triggering and

limited tracking based on sequences of detections. The nodes therefore had very limited

ability to classify and analyze the detected intrusions into the sensor field [53].

Classification would therefore be limited to what could be provided by tracks, such as the

estimated speed and bearing of the intruder, as well as the number of tracks created,

which could possibly give an indication as to the number of intruders.

 54

5. Testing the Adapt Sensor Nodes

a. Summary of Action

We traveled to Aberdeen Proving Grounds, 28 April–9 May 2014, to support

testing and demonstration of the prototyped wireless sensor network being developed by

the DARPA ADAPT program. All tests were conducted at the location of an old aerosol

testing facility that was being utilized by Edgewood Chemical Biological Center (ECBC)

staff. We worked closely on this project with several contractors working on the ADAPT

program, as well as with the project manager for ADAPT. During our stay at Aberdeen,

before the final demonstration to the Vice Chairman of the Joint Chiefs of Staff, Admiral

James Winnefeld, we conducted many tests of the ADAPT nodes that yielded interesting

results pertinent to the reliability and employment considerations of the system.

b. Testing

We conducted daily tests of the ADAPT WSN while at Aberdeen, to include four

tests of over 60 nodes. All tests were organized in a similar manner. For each test, we

hand-emplaced the nodes (shown in Figure 11) around the building, forming a sensor

field capable of tracking an intruder walking around the building. The building was four-

stories high and the wireless access point for the system was positioned on the building’s

roof. The terrain for the test consisted of slightly rolling hills to flat ground, with

medium to high grass in the area immediately surrounding the building. Further away

from the building (about 50 meters), the vegetation turned heavily wooded, with high

trees and rich foliage. A flat, paved road ran straight north from the building, with grass

along the edges of this road, giving way to densely vegetated woods 25 meters away from

the road. Sensors were emplaced along both sides of the road to a distance about 200

meters up the road, away from the edge of the building. The testing site field measured

approximately 800 meters in length oriented north to south, and 400 meters in width from

east to west. Nodes were spaced, along a likely avenue of approach within this field,

approximately 20 meters apart from each other and with varying density depending on

the micro-terrain. The weather during testing ranged from heavy rain, to overcast, to

sunny and clear; the wind ranged from heavy to calm. All testing was conducted during

 55

daylight hours. The testing site with a typical sensor node deployment, indicated by the

blue triangles, is depicted in Figure 11.

Figure 11. Aberdeen Test Network Formation with Neighbor Links

We emplaced the sensor field one time each day, but during that period ran

several iterations of remotely bringing the network down and allowing it to autonomously

reform. This capability to remotely bring the network up and down did not exist prior to

testing in Aberdeen, but we developed a process that allowed for this capability using

TCP over the 802.11 network. The ADAPT team also experimented with the

transmission power of the SAS radios on board the nodes. Early in testing, we had tried

turning the transmission power down to 15dBm, but later increased the transmission

 56

power to 23dBm as it yielded more consistent transmission of detections amongst the

node’s neighbors.

We also ran several iterations of creating tracks through the sensor field each day.

We took turns acting as intruders, creating tracks for the sensors as we walked around the

building and along the northern road. For the first week, we tested only a single intruder

at a time, creating a single track. During week two, we introduced a second intruder and

tested the system’s ability to track two simultaneous targets. During this second phase,

we attempted to keep the two tracks as discrete as possible so as not to confuse the

system in the early stages of development, since the system’s tracking capability has not

yet been refined.

We also tested the ability of the system to remotely kill an intruder as it moved

through the sensor field. This was accomplished through a process that allowed the

operator of the system to draw a radius around a geographical location, in which all nodes

detonated if a track was created inside the circle. Turning on the nodes’ camera flash and

LED light simulated the detonation of nodes—the nodes did not have a munitions

payload or any means to detonate the payload.

As the nodes’ camera drivers did not function properly, rendering the cameras

impractical for our use, two IP cameras were placed in the field to provide a real-time

visual-monitoring capability of the sensor field, at the command center. One camera was

placed looking north along the road and the other was placed south of the building. This

provided the capability to see the intruder as it moved through the sensor field creating

tracks. It also allowed the operator to visually observe the flashes of nodes as they were

detonated in the simulated killings of intruders. This provided immediate feedback on

the accuracy of the detonation.

As we tested each day, we made refinements to the positioning and orientation of

the nodes based on the capabilities and limitations of the system as they were learned.

Considerations for the positioning of the nodes included distance between neighbors,

radio transmission power, and the orientation of the PIR sensors in relation to the terrain,

 57

vegetation, and neighboring nodes. The sensor network operator also adjusted the timing

and radius of the detonation for the simulated munitions as testing progressed.

On the final day of testing, we conducted a demonstration for VIPs, which

consisted of executing the events described above. First, the network was allowed to

autonomously form from a down state, with no links previously existing between nodes.

Observers witnessed the time that it took for the entire network of nodes to obtain GPS

locations, begin reporting to the sink node (i.e., COC), discover neighbors and form links.

Next, two intruders walked through the field simultaneously, creating separate tracks.

Finally, the WSN operator in the COC attempted to “kill” one of the intruders at two

separate points along the route, each observable by a camera.

c. Results

Throughout testing, we observed that the autonomous formation of the wireless

mesh network was quick and reliable. On average, it took between 60 and 70 seconds for

the first node to report to the COC after starting the network, 90 seconds for the first links

between neighbors to be created, and four minutes for the entire network to be formed.

On two occasions, ten nodes were purposely left in the off state and brought up after the

formation of the network. These nodes were able to autonomously form neighbor

connections and integrate into the network with limited errors. Physically emplacing

nodes was a non-trivial task, and it took an average of 30 minutes for three people to

emplace 63 nodes. This was equivalent to a rate of .7 nodes per minute to be emplaced

for a single person.

All testing was done with the nodes in a testing/full state at all times—vigilant

power mode was never utilized, as it had been too unreliable. Also, all nodes were

directly reporting via 802.11, requiring constant use of the Wi-Fi antenna. This meant

that due to high power consumption rates, life cycle times for the nodes was a maximum

of two days, rather than the greater than 20 days that is desired by the ADAPT team, in

fulfillment of requirements of the client.

At the lower transmission power of 15dBm for the SAS radios, we observed that

nodes in the southern portion of the sensor field had difficulty forming neighbor links.

 58

This led to unreliable tracks that were often not continuous because of the difficultly of

sharing detections between neighbors. For this reason, even though tracks were still

recognizable as single tracks to the human operator monitoring the system graphically,

single tracks often registered in the system as multiple tracks. By turning the

transmission power up to 23dBm, we observed better neighbor connections between

nodes and more continuous and reliable tracks.

The environment had a major effect on the performance of the nodes. Heavy

rains that persisted for three entire days of testing subjected the nodes to flooding, and

upon inspection we noted that the inside of some nodes had become damp after

remaining out in the rain all day, with some being partially submerged. The rain also

affected the reliability of the PIR sensors, simultaneously degrading the ability of the

system to form tracks and increasing false detections. As one would expect with most

PIR sensors, we also experienced the same reliability issues during periods of bright

sunlight. The best performance was achieved during overcast conditions. High winds

caused a proliferation of false detections, with the nodes generally performing better

under calm wind conditions. Vegetation also was a problem—high grass and foliage

swaying in the wind tripped PIR sensors. After maintenance workers at the testing

facility cut the grass around the building, we noticed far less false detections. We found

the reliability of the PIR to be heavily dependent on the environment; implementing a

more refined detection system would require the use of multiple sensor modalities.

Testing the network with two simultaneous intruders walking through the field

yielded mixed results. We discovered that the two tracks had to be very distinct, meaning

separated significantly by time and space. To get two clean tracks, we had to start the

intruders at opposite ends of the field, and they could not cross paths at the same point in

time, otherwise the tracks would become confused.

The effectiveness of detonating nodes in order to kill intruders increased as the

operator became more experienced with his timing, so this process requires a highly

involved human in the loop.

 59

Figure 12 is a screen shot from the COC that depicts the nodes (blue triangles)

and a red track generated by a single intruder. In this test, the track is broken/interrupted

as the intruder walked around the corner of the building and the nodes could not associate

the events from the previous detections and tracks, to the current ones being reported.

This does not have a direct impact on the operator’s ability to determine that an intrusion

is occurring, but does introduce ambiguity as to how many intruders are present and their

direction. If the operator is vigilantly watching the scenario unfold on a device, then it

would be apparent, as the track stopped at a certain point and continued later on, that the

tracking of the intruder was broken. Figure 13 displays an unbroken track following a

single target, while Figure 14 displays the tracks of two objects that started in different

areas of the sensor field.

Figure 12. Broken Track Following One Person

 60

Figure 13. Continuous Track Following One Person

Figure 14. Continuous Track Following Two People

 61

d. Conclusion

The performance of the ADAPT sensor nodes during field testing validated the

choice for their incorporation into MSAT, but also revealed shortfalls that would have

implications for their inclusion in the automated surveillance system. The sensor nodes

generally met the requirements for use with MSAT: the nodes were low-cost, wireless,

TCP/IP compatible, performed network formation autonomously, and executed basic

detection and tracking algorithms. However, the shortfalls of the nodes would present

some difficulties. First, the nodes relied solely on the PIR sensors for all threat detection

and tracking. This single sensing modality limited the likelihood of conducting any

advanced threat classification with the system. Second, the reliability of these PIR

sensors was highly dependent on environmental factors such as vegetation, wind, rainfall,

and lighting conditions, leading to unpredictable behavior and a high incidence of false

positive detections. Unpredictable sensor behavior would have the potential to confuse

warfighters operating MSAT. The effect of this shortcoming on the actual

implementation of the MSAT prototype would be a system that forces the warfighter to

rely more heavily on manually classifying intrusions reported by the sensor system

through the use of video. This reliance on video for manual threat classification would be

further exacerbated by the existence of only a single functioning sensing modality on the

sensor nodes, ruling out the potential for automating threat classification by using

multiple sensors in collaboration.

Having established the importance of video, the next obvious problem that would

have to be overcome was the lack of functioning cameras on the sensor nodes. To solve

this issue, the MSAT reference design would have to incorporate separate cameras into

the system in order to provide video feed for the warfighter, at least until functioning

drivers were created that would allow for use of the internal cameras. The effect of this

modality is to rely on the ADAPT sensor field as a tripwire system calling the attention of

the individual monitoring the field of interest to specific locations in that field.

 62

B. APPLICATION SOFTWARE

We designed an application to act as the interface between the sensor nodes and

the warfighter using COTS mobile devices (Figure 15). In order to achieve our goal of

interoperability with the widest variety of device models, and in keeping with the bring

your own device (BYOD) philosophy of a military that has not yet decided on using a

universal standard, we created an HTML5-based application utilizing the client-server

model. The building of our application was thus logically divided into two functional

areas—the application server that would interface directly with the nodes and serve

content to clients, and the client-side code that would execute on the users’ devices.

Figure 15. MSAT Physical Topology Diagram

 63

1. Server

MSAT’s application server was built to accomplish several tasks. First, it would

act as a traditional HTTP server, serving static content to clients. Second, the server

would interface with the sensor nodes, receiving data on node locations, intrusions, and

targets as they were tracked through the field in real time. Third, the server would

process this data and serve it to connected clients in a human readable format through the

user interface. Fourth, the application server would facilitate tracking friendly positions,

the sending of messages and reports on the network, and monitoring the sensor video

feed. All of this functionality would be delivered for the purpose of maximizing

situational awareness for the warfighter utilizing the system.

a. Hardware

To run our application server, we utilized a Lenovo ThinkPad T510 with a dual

2.67 GHz Intel Core i7 CPU and 4 GB RAM running a 64-bit version of the Ubuntu

12.04.4 LTS operating system. This laptop contained a Centrino Advanced-N + WiMAX

6250 Wi-Fi adapter by Intel corporation, compatible with 802.11 a/b/g/n, and a 10.8 volt

Sanyo model 42T4791 6-cell lithium ion battery with 47520 mWh capacity. This laptop

was selected for its compatibility with the Ubuntu operating system, which was free and

open-source, making it friendly for use as a development environment for prototyping.

b. Version 1: LAMP Stack

We initially attempted to build our application server utilizing a Linux, Apache,

MySQL, PHP (LAMP) stack because of its open-source nature, widespread use on the

Internet, and thorough documentation. The LAMP server was installed on the application

server laptop. This server would provide connected clients with dynamic, real-time

updates through Asynchronous JavaScript and XML (AJAX) requests. To service AJAX

requests from clients, a PHP script on the server queried for node information stored in

the MySQL database. The MySQL database contained three tables: locations, detections,

and tracks. In order to communicate with the sensor field and populate the tables on the

server with the relevant information in real-time, we built an interface between the server

and the sensor nodes. Figure 3 depicts this implementation.

 64

(1) Server-Sensor Field Interface

We ran a SIS database instance on the application server machine and configured

the sensor nodes to send their tables to the IP address of the application server on Port

10000 over 802.11. A Bash script was written which invoked an infinite loop that

queried the SIS database, writing the results of the query into a text file on the server.

After writing the results of the query to a text file, the loop invoked a Python program to

parse the data contained in the text file into the MySQL database, utilizing the MySQLdb

library as the interface between Python and MySQL. Finally, the script cycled to the start

of the loop to repeat the process. This kept the MySQL tables up to date with node

information provided by SIS.

(2) Data-Transfer between Client-Server

The primary purpose of the application server was keeping clients updated with

the latest state of the sensor field through the User Interface (UI) on the client mobile

devices. The state of the sensor field consisted primarily of node locations, intrusion

detections, and tracks.

The UI was designed as a single page application (SPA), meaning that clients

were served the static HTML5 and JavaScript upon initially connecting to the Apache2

HTTP server. The static content included the layout of the page and styling in the form of

HTML, CSS3, map imagery of the local area, and JavaScript code that contained

instructions for the client’s browser to execute. The dynamic content would be updated

without having to reload the webpage.

Through the execution of the JavaScript instructions in the client browser, the

SPA dynamically updated changing node locations, detections and tracks as they were

processed by the server and forwarded according to the JavaScript programming. This

was accomplished through implementing AJAX polling to retrieve the updates from the

server. Specifically, HTTP requests for sensor field updates were made to the Apache2

server at a rate of every second using the native JavaScript function setInterval, which

executed a function at specified intervals, and the XMLHttpRequest object, which

 65

allowed for the creation of HTTP requests to the server originating from the client’s

browser, without having to reload the client’s webpage.

On the server, a PHP script was written to handle the HTTP requests from the

clients. When invoked by the client through the Apache2 server, the PHP script queried

the MySQL database that contained the current state data for the sensor field. The script

then parsed the results of the query into JavaScript Object Notation (JSON) and returned

the JSON object to the requesting client via the HTTP server. The JavaScript on the

client would then parse this information into a human-readable format generating the

display of node locations, tracks, and detections as graphics on the map overlay. As

previously mentioned, this process was executed every second for each client connected

to the application server through a persistent HTTP connection.

The implementation of a LAMP server allowed for the building of an initial

working prototype for MSAT, but performance limitations quickly became obvious.

During testing while developing the application, the application suffered from severe

latency, which resulted in a slow, unresponsive UI on connected client devices. It was

noticed that this problem grew noticeably worse as more clients simultaneously

connected to the application server. The cause for this latency was predicted to be the

Apache2 server’s multi-threaded nature and the blocking characteristic of querying the

MySQL database. Not only did every client’s request for static content generate a new

Apache2 thread, but each client generated HTTP requests at a rate of one per second

while connected and each request spawned yet another thread by the Apache2 process

running on the server. Additionally, each AJAX polling request invoked a new MySQL

database query through the PHP script. Since the database queries were blocking,

meaning that they were executed synchronously such that only one query could be

executed at a time and all other threads had to wait in a queue to be serviced, the database

querying manifested as a choke point on the server. This choke point slowed

responsiveness.

Additionally, the LAMP-based application server lacked any video capability, as

the cameras on the ADAPT nodes were not accessible due to non-functioning drivers.

Simply meeting the demand of serving node data to connected clients stressed the server

 66

beyond being usable, so the streaming of video to clients was not considered feasible

without a major design change on the server.

c. Version 2: Node.js Server

To solve the performance issues of the LAMP server that rendered the application

unusable, a complete redesign of the server was conducted utilizing different server-

software. Node.js was adopted as the solution due to its asynchronous model of

execution and its ability to create fine-grained networking applications through the

JavaScript programming language. Figure 16 is a diagram depicting how this was

implemented.

Figure 16. MSAT Logical Topology Diagram

 67

d. Performance Test: Comparison of Apache2 versus Node.js
Implementations

To determine which paradigm would provide the best performance, Apache2 and

Node.js were compared in a benchmark test. The results of this test were used to decide

whether or not to utilize Node.js over Apache server, which had already displayed

disappointing performance.

The overall goal of the test was to collect quantitative data about the performance

of the two servers designs under various loads. This was an important step in

understanding the capabilities and limitations of each technology and would aide in

choosing the correct server model with regards to the web application portion of the

overall system. Two different test scenarios were conducted for each server setup. The

first scenario tested the each server’s ability to serve a static web page to a large number

of non-persistent client connections. The second scenario tested each server’s ability to

service a persistent connection where a large number of clients were simultaneously

connected and continuously making HTTP requests of the server. The later scenario

simulated the use of AJAX for creating dynamically updated webpages.

To conduct the test, we decided that it was more important to utilize a sterile

direct, end-to-end connection between the simulation computer and the server rather than

a more complex network. During initial trials, it was recognized that testing on a

wireless network introduced uncontrolled variables, where results varied and were not

replicable. Some of the problems in attempting to use a wireless network to precisely

perform server load testing included the higher frame error rate due to the wireless

medium and interference from nearby stations. We also attempted to conduct the test

over the Naval Postgraduate School intra-network with the server connected by wire.

However, we noticed early in the trials that the results were skewed by current network

conditions such as traffic intensity. This intensity would ebb and flow throughout the day

based on usage. This made recreating the network conditions of each test nearly

impossible. In an effort to minimize the uncontrolled variables, we decided to create a

simple network, utilizing an Ethernet connection between the load simulator and the

 68

server. This minimized the number of variables in the experiment, in order to allow for a

strictly controlled test of the servers.

We ran our server on a desktop computer with a 2.66 GHz Intel Core Duo

processor and 2 GB of RAM. We used 64bit Ubuntu 12.04 LTS for the operating

system. On our server machine, we installed two different server architectures. The first

was Apache2 and was configured to listen on port 3000. We made no special

modifications to the standard software. We installed our Node.js server on the same

machine. Our Node.js server was custom programmed to serve our UGS application, in

an asynchronous manner. This was also configured to listen on port 3000. Since both

servers were configured to listen on the same TCP port number, only one server could be

run at a time.

After looking at various load simulation tools, we decided to use the Java-based

JMeter, an open-source load generating software, to generate client requests. We also

decided to use the more powerful computer to simulate the client requests, because we

anticipated that generating so many concurrent client threads would be a computationally

intensive task.

In order to setup the simple network, depicted in Figure 17, we statically assigned

IP addresses to each computer’s Ethernet interface. This was relatively simple to do

using standard Linux networking commands via the command line interface in Ubuntu.

Also worth noting, we were able to use a standard Ethernet cable rather than a crossover

cable, as most modern drivers are able to recognize such an Ethernet connection directly

between two computers.

 69

Figure 17. Testing Network Configuration

The first test conducted was the standard load test. This simulated a large

instantaneous burst of client requests. All client requests were generated simultaneously,

with no ramp up time between the requests. Worth mentioning is that while we simulated

thousands of simultaneous client requests, in actuality, since there was only a single

computer generating the requests, there was a small delay between these requests, so they

were not truly simultaneous. During this test, we served a static HTML document

through non-persistent TCP connections. This meant that a single client thread was only

responsible for generating an HTTP request once per test. The clients’ requests arrived in

the server’s queue nearly simultaneously. Once the entire queue had been serviced, then

the test would be complete. This test was chosen to simulate the condition where a large

burst of traffic suddenly arrives at the queue, which is traditionally one of the most

stressful demands that can be placed on a server. This scenario was also useful for

highlighting the potential strengths and weaknesses of different kinds of servers. During

this test, we incrementally increased the number of simultaneous client requests, in

thousand client increments starting from one thousand requests all the way up to twenty

thousand requests. We did this first for our Node.js server and then for our Apache2

server. The results for response times are presented in Figures 18–21.

The second test was designed to more closely simulate the operation of the MSAT

application, which required multiple persistent client connections. In this scenario, each

 70

client made multiple HTTP requests per second, in order to simulate achieving a real-

time monitoring capability for the UGS system. In order to accomplish this, clients

established persistent TCP connections, which stressed the server in a different manner

than the first test. After the initial influx of client connections, the server had to

constantly work to service pipelined client requests.

Figure 18. Comparison of Average Response Times for Concurrent Requests

As is apparent from the graph in Figure 18, at one thousand requests both servers

had comparable response times. After this point, the Apache2 server began to slow down

considerably, while the Node.js server gradually increased its response time. After the

seven thousandth concurrent request mark, the Apache2 server was no longer able to

service requests and approached the 100% error rate. The Node.js server easily surpassed

the Apache2 server break point and went on to nearly double the allusive (i.e., C10k

problem) ten thousand concurrent client connection mark for a web server. Past the

nineteen thousand-request mark, the performance of the Node.js server quickly degraded

as error rates grew unbounded.

 71

In addition to utilizing JMeter, we wrote server side code that measured the

service time of each request and calculated an average service rate per iteration of the

test. Shown in Figure 19 are the service rates for the Node.js server.

Figure 19. Node.js Server’s Service Rate for Requests

The results were inconclusive and possibly indicated a slight decline in service

rates as concurrent requests grow. This was unexpected, as we anticipated a more

definitive decline in service rates as the number of requests grew. This may indicate that

there was a bottleneck existing somewhere within the operating system, or at some

location outside of our server logic. This could be further explained by the way the

operating system deals with a large number of TCP connections.

For the second test, we further tasked each client to repeatedly make pipelined

HTTP requests to the server, until one hundred thousand total client requests had been

serviced. We started at one hundred simultaneous connections and incremented by one

hundred clients, until one thousand concurrent connections were established. After

 72

observing the results from test one, we expected Node.js to greatly outperform Apache2,

but the results shown in Figures 20 and 21 were surprising.

Figure 20. Comparison of Average Response Times for Persistent Connections

Figure 21. Comparison of Error Rates for Persistent Connections

In Figure 20, the Apache2 and Node.js servers performed almost identically, with

Node.js having a slight advantage over Apache2 until the 800 connections mark. At this

point Node.js suddenly failed and Apache2 continued on with error rates growing

0

100

200

300

400

500

600

700

800

100 200 300 400 500 600 700 800 900 1000

Response Time,
milliseconds

Number of Persistent Connections

Simultaneous Connections

Apache

Node.js

0

1

2

3

4

5

6

100 200 300 400 500 600 700 800 900 1000

Error Rate,
Percent

Simultaneous Persistent Connections

Error Rates for Persistent Connections

Apache

Node.js

 73

linearly. This is where Figure 21 is of interest, because Node.js experienced a zero

percent error rate all the way up to the 800 simultaneous connections point, while the

Apache server began experiencing errors as early as 300 connections. This indicates that

there was probably an acute reason for the sudden failure of the Node.js server, and we

speculate that this reason could be operating system limitations, or even limitations to the

underlying configuration of our Node.js installation. We also have no definitive

explanation for the gradually increasing error rate of the Apache server. This may

warrant future exploration.

This testing led to interesting conclusions. We believe that the results of our

second test validated our design decision to migrate our UGS application server from the

multi-threaded model of Apache to the asynchronous Node.js. The reliability of the

Node.js server all the way up to the 800 connection mark was encouraging and we

believe made it a better choice for our application than Apache, as the need for more than

800 simultaneous users of our system is unlikely. In other words, we placed an emphasis

on reliability for a reasonable number of simultaneous connections over the capability to

handle an extreme number of connected clients but with a diminished overall reliability,

even at lower numbers of client connections. The results of test one further validated this

design choice because Node.js clearly was more capable of handling massive bursts of

requests without errors.

Overall, due to a number of interesting research papers that have already

addressed the performance of Node.js, we expected Node.js to excel during these two

tests. However, with both tests, Node.js experienced dramatic failure points, rather than

gradual degradations of performance. This would seemingly indicate that we did not

approach the actual limitations of the Node.js server, but rather witnessed a potential

misconfiguration or bottleneck that was capable of being overcome. This is in contrast to

the Apache2 server that experienced gradually increasing error rates in the face of

growing concurrent connections, which we believed was an indicator that the server

model itself was being stressed to its eventual breaking point. For future work, we

propose examining the potential sources of the Node.js failures in an effort to correct

them. This would involve carefully delving into the configuration of the operating

 74

system and Node.js source code. After doing so, another benchmarking test should be

performed.

Nonetheless, based on the results of this test, Node.js was selected for use to

replace the Apache2 server used in Version 1 of the application.

e. Interface with Nodes

In Version 2 of the MSAT application server, the MySQL database was

eliminated in an attempt to improve performance by fixing the bottleneck that had existed

previously, when numerous blocking queries were executed by the AJAX version. This

was enabled by the ability of Node.js to make direct queries to the SIS database process

running on the ADAPT server through the shelljs module. Recall that the SIS process

provided the interface with the ADAPT nodes, which sent pertinent environmental data

to the SIS process running on the machine via port 10000. The shelljs module is an

official Node library that allowed the execution of bash shell commands from within a

Node.js application. The querying was executed in a non-blocking fashion through

shelljs’ ability to execute shell commands asynchronously. A callback function provided

to the asynchronous shelljs query to SIS parsed the results for the query into a JSON

object directly, thus eliminating the need for the parser written in Python on Version 1 of

the server. This JSON was then transferred to the clients.

Figure 22 is a container diagram, highlighting the interactions between code

modules that occur within the MSAT system. The two servers are depicted with their

functions, as well as the communication that occurs between them, enabling the sharing

of sensor field messages to the user’s mobile device. In addition, the peripheral devices,

IP camera, and nodes are shown and how they interface with the tactical network server.

 75

Figure 22. Application Container Diagram

f. Replacing AJAX with WebSockets

Server-polling through AJAX put unnecessary stress on the application server due

to the inefficient generation of HTTP requests. With this model, clients requesting

situation updates sent an HTTP request every second while connected, even when the

server had no new information to push. To eliminate this unnecessary generation of

network traffic and reduce total network latency, AJAX was replaced by the use of

WebSockets. WebSockets allowed for the establishment of continuous, bi-directional

connections between client and server entities. This provided the ideal instrument for

real-time updates from the server because with WebSockets, data only had to be pushed

over the network when there was new information to report, eliminating the unnecessary

polling messages.

 76

The use of WebSockets was enabled by the Socket.io module for Node.js.

JavaScript on the client pointed to the location of the WebSocket (i.e., port number and

IP address) on the server and established the connection upon the client initially being

served the SPA. On the server, the setInterval method was used to query SIS every

second, parse the result into a JSON object, and pipe this result through all open

WebSockets to clients. This provided the real-time view into the sensor field.

g. Blue Force Situational Awareness: Locations and Chat

MSAT was intended to provide advanced situational awareness to users of the

application, so besides just updating sensor field activity, the application provided the

ability to track and communicate with friendly forces (i.e., blue forces) on the battlefield.

This was accomplished through two means: plotting friendly locations and chat

functionality.

The Geolocation API provided by HTML5, in the client SPA, obtained the user’s

location either through a Wi-Fi location estimation, which was accurate only to 500

meters, or through GPS when available on the client device. Each time the Geolocation

API obtained a fix for a user’s location, a callback function would be triggered that would

send the user’s coordinates via the WebSocket to the server. Every time the server

received an updated location from a connected client, a callback would be triggered that

updated the user location in an array used to track the locations of all connected users,

and the updated coordinates would be sent out to all connected clients through their

WebSockets, ensuring that each client maintained an accurate picture of friendly

positions.

Through the SPA, clients had the ability to chat with all other users of the

application, and the server provided the backbone of this functionality through

WebSockets. Client’s had the option of sending either private messages meant to be

received only by a single user or public messages meant to be broadcast to the entire field

of users. The server received messages generated by the client through the client’s

established WebSocket; upon receipt, a callback function on the server multiplexed the

message appropriately. To be able to send private messages selectively to individual

 77

clients, an array was maintained on the server that associated WebSocket identification

numbers (i.e., unique numbers assigned to each WebSocket by the Socket.io API) with

client-chosen usernames in order to resolve the WebSocket identification number of the

intended recipient. This WebSocket identification number therefore acted essentially as a

client’s address for private messages and facilitated its appropriate routing.

h. Remote Command and Control (C2) Configuration

The capability to access the MSAT application remotely (i.e., from outside the

local 802.11 network) was sought in order to enable personnel located offsite to monitor

the sensor field. This capability would support the use case of leadership located in a

COC being able to see the same view of the sensor field as the warfighter, who would be

using the application co-located (i.e., connected to the same local area network) with the

sensors on the battlefield. It would also support the use case of monitoring the sensor

field while no friendly forces were co-located with the sensors (i.e., completely remote

monitoring).

To achieve this remote COC functionality in Version 2 of the MSAT application,

the application server software was divided into two separate processes: a relay designed

to be run on a machine located within the local 802.11 network, and an application server

that could either be co-located with the relay running on the same machine, or

alternatively run on a separate machine on a network outside the local tactical Wi-Fi

network. Both processes were implemented with Node.js and written in JavaScript.

The purpose of the relay was to route data between the ADAPT sensor nodes and

the application server. The interface with the ADAPT nodes was achieved through the

technique detailed in the above section. Upon parsing the node data into a JSON object

whenever it received results from a query to the SIS database, the relay would send the

JSON object via user datagram protocol (UDP) to a server running on the remote server

process located outside the local network. UDP was chosen as the protocol for JSON

transfers due to its speed. The unreliability of datagram receipt with this protocol was

deemed acceptable in this case because of how often new JSON objects were forwarded.

The relay also fed camera images from the AXIS IP camera, which was integrated into

 78

MSAT to provide a video capability, to the application server through an HTTP server

listening on the relay server. The relay server also passed on camera control commands

(i.e., tilting, panning, and zooming), originating from the user on the mobile device, from

the application server to the HTTP server on the AXIS camera in the form of HTTP

requests.

In the remote configuration, the application server was accessible by the relay

through its public IP address. In our implementation, the remote server was installed on

an Amazon EC2 instance running the Ubuntu 12.04 Server operating system. The relay,

however, was located behind the network address translation (NAT) functionality

provided by the Verizon MiFi (responsible for providing the Wi-Fi bubble locally), and

thus was not directly accessible from outside the network. Therefore, the relay had to

initiate all connections to the remote server due to the inability of the remote server to

locate the relay behind the NAT of the MiFi.

The application server could be run on the same machine as the relay to give local

users access to MSAT, it could be run separate from the relay to enable remote

monitoring, or both on the local machine and remotely to allow both local operators and

offsite COCs to use the application at the same time.

i. Security

After the remote COC configuration was introduced, Transport Layer Security

(TLS) was implemented on the application in order to encrypt communications between

clients and server.

The native https module in Node.js was utilized to create an HTTPS server that

established the encrypted tunnels between clients the server. OpenSSL, an open source

encryption-program for GNU Linux, was used to generate the private/public key pair

necessary for using TLS. OpenSSL was also used to generate the certificate required for

authenticating the server for the HTTPS protocol. The certificate was self-signed.

Basic authentication was programmed into the server through the http-auth

library. The basic authentication protocol worked by maintaining a list of authorized

 79

users in a file named users.htpasswd on the server. This file contained a list of usernames

and their corresponding passwords digests, which were the result of hashing the users’

passwords with the MD5 algorithm [55]. Once a user requested the SPA from the MSAT

server, the user would be prompted to enter a valid username and password. The server

would then hash the password with MD5, and perform a lookup of this username with the

password digest in users.htpasswd. If the pair existed, then the server would serve the

SPA to the client who could begin viewing the sensor field. If not, the client would not

be able to access the SPA.

The application’s WebSockets were also encrypted via the WSS protocol, which

implemented the WebSocket protocol over TLS. This functionality was programmed

using the Socket.io module for Node.js.

j. Camera Solution and Streaming Video

Because of the limited ability of the ADAPT nodes (i.e., PIR sensors only) to

conduct threat classification and analysis, another means was sought in order to satisfy

the requirement that an automated LP/OP would have to fulfill the information

requirements of the SPOTREP. With functioning camera drivers on the ADAPT nodes,

video imagery could have been inspected by the human in the loop after sensor actuation

by a threat. Without these functioning onboard cameras, however, an external camera

had to be integrated into the system as a temporary solution for the prototype. This

would emulate the functionality that would exist with working camera drivers.

A single-camera was utilized for the sensor field. The camera was an AXIS

Model 214 PTZ IP surveillance camera with 18x optical zoom and autofocus capabilities.

It had the ability to be remotely panned, tilted, and zoomed. The camera had Ethernet

interface but no 802.11 capability. The camera ran an internal HTTP server on top of a

Linux kernel. This HTTP server provided a streaming feed from the camera in motion

joint photographic experts group (MJPEG) format, allowed for camera configuration,

and for the camera to be remotely controlled through HTTP requests [56].

To bring the camera up on MSAT’s wireless tactical network, the camera was

connected via an Ethernet cable to a battery powered wireless access point (AP). This

 80

AP was configured as a wireless client on the network and was assigned a fixed IP

address. The camera’s HTTP server was exposed to MSAT’s tactical 802.11 network

through a port-forwarding rule on its Ethernet-connected AP acting as a wireless client.

MSAT’s relay used a loop to generate an HTTP request to the camera server,

every second, in order to obtain a JPEG camera-image of the current view of the camera.

This HTTP request was generated using the Request module. Upon receipt of the

response from the camera server, the relay process converted the jpeg image to a base64

encoding, which was simply a string representation of an image, utilizing a method native

to Node.js. This base64 image was then embedded into the payload of a POST request

that was then sent to a dedicated HTTP server on the MSAT application server, running

on a port separate from the port used to service connected clients. In this way, image

streaming could be accomplished to the application server from behind the NAT of the

Verizon MiFi device.

Moving and zooming the camera was accomplished through the Pan-Tilt-Zoom

API on the Axis camera, which consisted of using HTTP requests to the camera server.

Because the HTTP server on the camera was inaccessible behind the local NAT, users of

the application outside of the local network wanting to control the camera had to traverse

the NAT. This was accomplished with the following method: the client would generate a

command utilizing the UI on their mobile device and this command would be sent to the

MSAT application server through the WebSocket, which maintained a persistent

connection between client and server. The Application server would then store this

command, and attach it to the response message to the next POST request containing the

base64 image from the relay running behind the NAT. Recall that this POST request

containing the camera images arrived every second according to the interval set on the

relay. The relay would receive this command in the response, parse it into the correct

HTTP request format for the Axis camera, and send it. The camera would receive this

command, and move the camera accordingly.

 81

C. UI

MSAT presents a web application to users’ web browser windows. Here the user

can interact with the different functions of the application, depending on what features

the browser supports (i.e., Safari, Windows 7/8, Firefox, Chrome). Most modern web

browsers try to support all the latest additions of JavaScript, CSS3, HTML5 and all the

various media plug-ins; however, they all complete that task in different ways. This is an

important aspect to consider when designing web applications so that a user is not

penalized due to their choice of web browser. Essentially, the use of well thought-out

code allows for compatibility with the largest number of browsers and devices. Such

ubiquitous compatibility presents a formidable challenge, but since 2010 there has been a

significant drive for developers to achieve this goal, that is, to best respond to the user’s

device and browser with appropriately formatted application information.

The web browser is a unique medium upon which a web developer works, since it

has no boundaries like an art canvas. Instead, the x and y coordinate planes on the scroll

bar are indefinite. This makes working within the medium very fluid, due to the fact that

the browser can scroll and size freely. In the past, this medium for web development has

been approached as if it were a print medium, with specific boundaries and limits. The

print medium is not fluid and a design width and height is the first thing that is settled

upon when beginning a project interface [57]. Therefore, a different approach needs to

be made so that we can tackle this issue that is concisely described in [41]: “In short,

we’re faced with a greater number of devices, input modes, and browsers than ever

before.”

1. RWD Description

The basics of RWD were briefly discussed in Chapter II, but a more in depth

description is needed to fully understand how it was utilized in the development of the

MSAT UI. RWD is implemented through three key tools and is described in [41]. “Fluid

grids, flexible images, and media queries are the three technical ingredients for

responsive web design, but it also requires a different way of thinking. Rather than

quarantining our content into disparate, device-specific experiences, we can use media

 82

queries to progressively enhance our work within different viewing contexts” [41]. In

terms of the MSAT, the web application would already have a responsive base layer—the

map with node positions, detections, and tracks. This layer could already be easily

scaled, zoomed, and resized. The challenge in making this design responsive arose from

the implementation of a navigation bar and the various content boxes (i.e., chat

application, video feed, node information) that would be displayed.

For the purposes of the MSAT application, fluid grids were not necessary since

the design relied upon a navigation bar on top of an interactive map. The sole focus

would be to have one element, a fluid navigation bar, able to scale to a variety of devices

and provide the user with commonly utilized functions to interact with the sensor field.

Figure 23 is an example of how this navigation bar’s container would be styled, on top of

the map layer.

Figure 23. Fluid Element Example in the MSAT CSS3 File

Flexible images are achievable through fairly straightforward code, much like the

concept of the fluid element shown above. The key concept is to utilize a page structure

that defines containers for elements and then the elements can fill the width of their

container. If the container shrinks for different screens, so does the image, hence its

ability to adapt to the size. Figure 24 is an example of how the video image is defined

within the CSS3 file in order to make it a flexible image.

 83

Figure 24. Flexible Image Example in the MSAT CSS3 File

These three lines of code allow the image to accomplish the previously defined

goal of being a flexible image by creating a container (i.e., div) within the video box (i.e.,

videoBox) and allowing it to fill that space. If the video image size is larger than that of

the video box, then the image will be cropped.

The media query contains two pieces of information: the first being the media

type (i.e., screen for this case) and the second being the query of a media feature (i.e.,

width or height and some associated value). When the CSS3 code is executed by the

browser and a media query is matched then the enclosed styling of that query will be

applied. Figure 25 is an excerpt of media query CSS3 code that is used in the MSAT,

which allows us to query for a mobile device screen and apply a smaller navigation bar.

Figure 25. Media Query Example in the MSAT CSS3 File

 84

This media query specifically targets iPad and iPad mini, in portrait mode, by

defining a specific device width and pixel density. The follow-on styling that occurs

inside the media query brackets is used to fix break points that occur within that device’s

screen. Unfortunately, the task is not so simple as to write one media query and be done.

The design has to be thoroughly tested to identify break points (i.e., content begins to

degrade, overflow containers, or loose functionality) and at each point a new rule needs

to be applied to fix the degradation. This is a tedious process that is time consuming for a

developer. The end result is that for the extra time invested by the developer, in

thoroughly testing the design, the output will be a more universally formatted tool that all

devices can use.

With all these tools in concert, the application began to reflect a RWD aimed to

deliver content to a wide range of devices. Figures 26–32 are screen shots of the

application on a desktop utilizing different browsers, two different Android and Apple

tablet devices, and an iPhone mobile browser in the landscape and portrait orientation.

Figure 26. Desktop Device Running MSAT in Chrome Browser

 85

Figure 27. Desktop Device Running MSAT in Safari Browser

Figure 28. Android Tablet Landscape View

 86

Figure 29. Apple iPad Mini Landscape View

Figure 30. iPhone4 Landscape View

 87

Figure 31. iPhone4 Portrait View

Figure 32. iPhone4 Portrait View with Menu Expanded

 88

These screen shots of various devices and their browser highlights the RWD

implementation and the motivation for pursuing this framework. With this capability, the

MSAT is not pigeonholed to a specific device, operating system, or browser and it

provides more flexibility to the user to determine on which platform to employ it.

2. Supporting Technology

HTML5 and CSS3 alone cannot provide all the functionality required for the

MSAT UI. In order to increase user feedback through audio, visual, and haptic cues there

must be outside libraries and frameworks incorporated. For the MSAT system, the

following libraries were used: JavaScript, jQuery, Leaflet, and Esri Leaflet.

In the book [58], the author gives a snapshot of JavaScript’s history with web

applications by stating:

The History of the web is punctuated with technological improvements.
One of the earliest additions to HTML was the img element, which
fundamentally altered the web. Then, the introduction of JavaScript
allowed the web to become a more dynamic environment. Later, the
proliferation of AJAX made the web a viable option for full-fledged
applications. [58]

JavaScript has evolved into a web scripting language that provides both client-

side scripts and server-side network programming. We utilized this programming

language exactly for that reason, as it enables a development team to code the client- and

server-side code in the same manner. On the client side, JavaScript is utilized for

functions that allow the user to interact with the DOM and toggle on/off certain features

on the navigation bar. It is also used to parse the JSON in order to add or update node

positions, detections, and tracks onto the map layer. JavaScript also makes calls to the

AJAX engine, which allows for the nodes, detections, and tracks to be dynamically

populated on the map. The server-side use of JavaScript will be covered in a later

section, titled Web Application Server.

JQuery is a library that abstracts away the details of JavaScript and purports to

allow simpler, cleaner scripting on the client-side [59]. We utilized this in only a few

instances, as it afforded an easier way to manipulate an item on the page versus

 89

JavaScript. This use of jQuery can most notably be seen in the drop down menu for

mobile devices (i.e., Figure 32). The function to create this effect is built from the

JQuery library.

Leaflet is an open-source mapping tool that was discovered during the researching

phase of the thesis. The website [60] states,

Leaflet is a modern open-source JavaScript library for mobile-friendly
interactive maps…Leaflet is designed with simplicity, performance and
usability in mind. It works efficiently across all major desktop and mobile
platforms out of the box, taking advantage of HTML5 and CSS3 on
modern browsers while still being accessible on older ones. [60]

This was a suitable fit with the rest of the web application, due to its availability,

development community, and ease of use. It allowed for a rapid prototype of MSAT to

be developed in the early stages of the thesis process. Leaflet allows for the loading and

placement of map tiles within the browser and the control over styling and size for the

node icon, detection radius, and track segment.

Esri Leaflet is an open source plug-in that allows for Esri’s ArcGIS map tiles to

be easily displayed and manipulated within the Leaflet library [61]. This provided the

MSAT application with various high quality maps from which the operator can select,

while keeping with the requirement of finding open source solutions to minimize cost.

3. Testing

Designing and developing the UI was approached in two phases. The objective of

the first phase was to create a simple, yet functional, UI prototype that would allow for

the testing and development of the web application server. Since the majority of the

intensive coding work revolved around the server, it was important to have a rapidly

developed (i.e., low development cost) client-side device that could portray an adequate

picture of the information being retrieved and parsed by the server. Figure 33 shows a

screen shot of the UI prototype; this UI was utilized for the majority of the development

of the web application server.

 90

Figure 33. MSAT UI Version 1

The initial MSAT design resulted in a wide variety of ways in which the users

access the application depending on the type of device used. Due to this variety, the user

struggled to receive an accurate picture of the sensor field if they were not on a system

similar to the development platform. In addition, interaction with this design was

difficult to navigate on a mobile device. This further solidified our drive to pursue a

responsive web design that could provide a consistent interface for a large variety of the

current devices and web browsers.

The objective of the second phase was to build upon lessons learned during the

first phase and implement a design that was unobtrusive to the user’s interaction with the

device. Specifically, we sought to maximize their situational awareness, make

reoccurring tasks readily accessible, and provide various forms of feedback to aid in their

task of monitoring the sensor field. Figure 34 shows a screen shot of the UI developed

according to a RWD approach utilized for the final stages of development and for all of

the field-testing.

 91

Figure 34. MSAT UI Version 2 with a RWD Approach

The UI developed according to the RWD approach was able to display the web

application on a variety of devices in a manner that retained all of the application

capabilities and functionality. Testing this RWD-based implementation on a multitude of

mobile devices, browsers, laptops, and operating systems verified the design was

operating as intended. Feedback from user interaction with the MSAT design is covered

in the section titled Discussion of Results.

D. COMPLETE SYSTEM TESTING

1. Summary of Testing

For the final stage of the incremental testing, we spent two days testing a

deployment of the complete MSAT system. The purpose of this testing was to

demonstrate that such a system could feasibly automate the LP/OP, thus enabling follow

on research and eventual development of a refined system for use by military end-users.

 92

To test the system, we created a mock defensive scenario that highlighted a chosen use

case, and we tested the performance of MSAT in handling the requirements of the

scenario. The system was deployed outdoors in an environment that was only partially

controlled, meaning the system had to operate in contention with unpredictable factors.

Marine infantry officers, with combat experience in Afghanistan and no prior experience

or training with MSAT, operated the system. The results of the test indicate that while

the system needs further refinement and development, overall the reference design

succeeded in meeting the requirements of an automated LP/OP.

2. Concept of Testing

To test the system, we first created a scenario that would highlight a likely use

case for a unit employing the system in combat. Since LP/OPs are very commonly

deployed in defensive operations, we decided to employ MSAT as part of a defensive

operation. Specifically, MSAT would be integrated into a hypothetical defensive scheme

of maneuver for a platoon tasked with blocking from a battle position. The system would

be used to surveil a section of road not visible from the defensive position due to

intervening terrain (i.e., a hill). An operator, without the ability to directly see the ground

being covered by the sensors, would monitor MSAT for enemy activity. The

effectiveness of the system would be judged by its ability to detect enemy intrusions into

the assigned Tactical Area of Responsibility (TAOR), enable the operator to classify the

threat with enough detail to generate a SPOTREP, and allow the operator to send the

SPOTREP via the built-in form and chat application in a timely manner.

3. Conduct of the Test

We decided to utilize five Marine officers as the operators of MSAT for system

testing. All had at least four years of military service, combat experience in Afghanistan,

and little to no experience with employing sensor systems in combat. We sought out

these personnel because of their familiarity with LP/OPs, their ability to provide feedback

on the utility of such a system, and their lack of specialized sensor training. In no way

were the operators evaluated, as the focus of the test was strictly the ability of the system

to support LP/OP operations.

 93

a. Scenario

We formulated a mock scenario to frame the system testing. The scenario

involved establishing an LP/OP as part of a platoon in a static defensive position. The

LP/OP would be responsible for reporting all movement (enemy, friendly, and neutral)

within its assigned TAOR.

The following fragmentation order was created to describe the scenario and was

briefed to our operators before testing began:

Situation: You are a fire team leader in 3rd Sqd, 3rd Plt, Company B, 1/3.
You are currently conducting defensive operations with your Plt, in an
effort to secure the town of Del Montia, while humanitarian assistance is
provided to the inhabitants of the town, in order to prevent enemy
insurgents from entering the city and disrupting the humanitarian efforts.

Mission: Screen to the north of the Plt’s position in order to provide early
warning to the Plt of enemy approach along ASR Red.

Execution: Utilize MSAT as an automated LP/OP in support of your
platoon’s defensive scheme of maneuver.

Administration/Logistics: You will utilize a ruggedized tablet, in
conjunction with the tactical network provided by MSAT.

Command/Signal: Upon enemy contact, generate and send a SPOTREP
to the platoon CP utilizing MSAT’s integrated chat application.

b. System Setup

The setup of the testing site is depicted in Figure 35. The TAOR for the LP/OP

was an east-west running road and trail bounded by a lake to the north, located on the

campus of the Naval Postgraduate School. Foot and vehicle traffic in this area would be

canalized due to the restricted nature of the terrain—the TAOR was bounded to the north

by a lake and to the south by wooded terrain. Therefore, the most likely avenue of

approach for any enemy traveling through the AOR would be the east-west running road

and trail. The hypothetical platoon battle position was located one hundred meters south

of the TAOR for the sensors, behind a hill with a clump of trees, such that the TAOR

would not be visible from the main battle position.

 94

Figure 35. Testing Site

(1) Node Placement and Spacing

To enable monitoring of this most likely avenue of approach in the TAOR, 14

sensor nodes were emplaced along the road. Nodes were positioned on both sides of the

road and trail for a total frontage covering approximately 200 meters. All nodes were

emplaced by a single individual who carried the nodes in a specialized load-bearing pack

designed for carrying antelope by hunters, shown in Figures 36 and 37. The nodes were

spaced an average of 25 meters apart laterally along the road, and spaced approximately

20 meters apart (the width of the road) across from each other on either side of the road.

 95

Figure 36. Side View of Nodes in Load-Bearing Pack

Figure 37. Top View of Nodes in Load-Bearing Pack

 96

(2) Use of Sink Nodes

Two of the 14 nodes emplaced were configured as sink nodes. The role of these

sink nodes, in addition to acting as sensors themselves, was to relay data from the non-

sink nodes that were communicating via the SAS ground-radio protocol, to the

monitoring station attached to the 802.11 wireless network, essentially acting as a bridge

between the SAS and Wi-Fi networks. The purpose of using two sink nodes instead of

connecting all of the nodes to the 802.11 was to limit traffic intensity on the wireless

network that would affect application performance, conserve power on the majority of

the nodes by turning off their Wi-Fi radios, and to circumvent the limitations of the

4G/LTE Hotspot. The Hotspot was limited to only 10 simultaneous Wi-Fi connections

and had only a limited range (approximately thirty meters) that could not fully encompass

all of the nodes, especially the ones at the outer edges of the sensor field.

(3) Camera Placement

The AXIS Camera used for visual over-watch of the sensor field was the only

system component that required an external power source. Thus, the camera was

powered via a 100W inverter, plugged into the cigarette lighter of a pickup truck; the

camera was placed on top of this truck. The truck-mounted camera was positioned in the

center of the TAOR (Figure 35) such that it would be capable of observing down the

eastern and western avenues of approach. The camera was connected via Ethernet cable

to a portable, battery powered 802.11 access point configured to act as a relay between

the camera’s video server and the 4G/LTE Hotspot. Utilizing this wireless relay, the

camera’s server was connected to the local Wi-Fi network and assigned a dynamic IP

address via the 4G/LTE Hotspot’s DHCP server, making camera controls and video feed

accessible from the rest of the network.

(4) Tactical Wireless Local Area Network (TWLAN)

In order to transition the MSAT from the lab to an outdoors testing area, there

needed to be a mobile network in place. MSAT components were networked utilizing

802.11 g. A Verizon 4G/LTE Hotspot (MiFi 5510L) provided the Wi-Fi bubble for the

sink nodes, the camera, the application server, and the mobile monitoring devices to

 97

communicate and also access to the outside Internet via Verizon’s 4G infrastructure,

which provided coverage at the testing area. The Wi-Fi was secured using WPA2 with a

pre-shared key (PSK). All connected components, to include the ADAPT nodes, utilized

this key to gain access to the network.

(5) Application Server

The application server was installed on a laptop located inside the cab of the

pickup truck, located with the Hotspot and the camera. The laptop was powered with its

own internal battery.

(6) Monitoring Devices

An iPad Mini tablet with a ruggedized case and a Samsung Galaxy Tablet were

used for the monitoring platforms.

4. Testing Protocol

A testing protocol was created in order to test the system’s capabilities. Actors

would walk tracks through the sensor field, and mobile devices connected to the

application server were utilized to classify intrusions, generate SPOTREPs, and

communicate the SPOTREPs over the network to the simulated platoon command post

connected via 802.11.

a. Simulated Intrusions into the Sensor Field

In order to test the ability of the system to detect intrusions and enable the

classification of threats and the generation and sending of SPOTREPs, events were

randomly generated and presented to the system. A random event generator was created

in the Python programming language that when executed output an event description that

would define the SPOTREP of the event. The events were limited in scope in order to

facilitate standardized reporting using a prepopulated SPOTREP form within the MSAT

user interface. All events would be classified according to the acronym SALUTE. For

the field testing, the size of the event was limited to either one or two personnel, the

activity of the personnel was either running or walking, the location of the personnel was

either from the west or from the east, and the unit identification was friendly, enemy or

 98

neutral. Time was the time of observation in local time, and equipment was a rifle, a

pistol, or nothing at all. Finally, no-events were possible, meaning no intrusion would

occur during a time period.

Actors were utilized to play out the randomly generated events for the system to

attempt to classify. Actors simulating friendly forces wore digital USMC camouflage

utilities. Actors wearing green flak jackets simulated enemy forces, and neutral forces

wore neither. The actors carried rubber rifles, pistols, or nothing based on the generated

scenario. The actors entered into the sensor field on the path either from the west or the

east depending on the scenario, and ran or walked according to the event description.

Tests were run for approximately four hours each day for two days, and this total

testing time was subdivided into 5-minute periods. One event would be executed every

period, with no activity being a possible event. Each operator was presented with at least

three events.

b. Use of Mobile Devices to Monitor the Sensor Field

Operators were tasked with utilizing a tablet to monitor the sensor field and

generate SPOTREPs based on intrusions into their TAOR. An Android tablet would be

utilized for half of the events, while the other half of the time an iPad Mini would be

used. Before testing began, the operators were given five minutes to familiarize

themselves with the user interface and to practice controlling the camera.

Constantly running a camera on the ADAPT sensor nodes would consume battery

power at a rapid rate, thus limiting its lifespan in the field before needing to be recharged.

Also, constantly monitoring a camera requires persistent human attention, thus

consuming the human resources of the combat unit utilizing the system. Therefore, the

constraint was imposed that the camera could only be utilized by the operator to classify

threats. In other words, the camera could only be utilized by the operator after the

sensors reported an intrusion into the sensor field through the system’s reporting of

detections and tracks to the monitoring device. The camera would be the primary means

of classifying threats due to the lack of a mature threat classification algorithm within the

sensor system because of the lack of a multiplicity of sensing modalities.

 99

Every event during system testing was divided into three phases. During Phase

One, the threat made entry into the sensor field from the east or the west and walked a

track along the path. The distance into the sensor field that a threat was able to move

before the operator made the determination that an intrusion had occurred based on

reporting from the sensor nodes was recorded for every event. Upon detection of the

threat, Phase Two began and the operator was allowed to open the camera interface on

the tablet and attempt to classify the nature of the intrusion through control of the camera.

The time from threat detection until threat classification, using the camera, in seconds

was recorded as a metric. After the threat was classified, Phase Three began, which was

the generation and sending of the SPOTREP. The amount of time taken by the operator

to open the SPOTREP form, complete the form, send the form, and have it received by

the mobile device simulating the platoon CP was recorded. Finally, the accuracy of the

SPOTREP submitted by the observer was recorded.

5. Limited Scope of Testing

The purpose of the testing was to demonstrate the potential for a reference design

for an automated LP/OP and not as a test to generate precise metrics for a finished,

production product. Therefore, environmental factors were not precisely controlled and

results would be skewed by human factors such as unique characteristics of the

individuals monitoring the system through the UI, and by environmental factors such as

wildlife in the testing area, weather conditions, vegetation, and unplanned movements of

people through the site. The uncontrolled and unpredictable factors were not avoided;

rather, they were embraced for the interesting commentary they would provide regarding

the feasibility of the system.

6. Discussion of Results

a. Node Emplacement

The nodes were hand-emplaced along the route by a Marine carrying all 14 nodes

in a pack. The 14 total nodes weighed 43 pounds, and it took 7 minutes and 38 seconds

for them to be set out the first day, and 6 minutes and 44 seconds to set them out the

second day.

 100

b. Network Formation

The individual sensors were always emplaced while in the “off” state, and we

observed how long it took on both days for the network to autonomously form after

turning on the nodes. Across both days, it took an average of 27 seconds for the first

link to be created from a sink node to the application server, but 15 minutes and 30

seconds for the entire network to form. We counted the network as being formed after the

majority of nodes obtained GPS fixes and created links with neighbor nodes, and no new

links were in the process of being formed. The first day, 12 of the 14 nodes joined the

network, with the remaining two not forming links with neighbors. This occurred both

times the network formed. The second day, only 11 nodes initially joined the network.

After the network stabilized, meaning at least five minutes had passed with no new links

being formed, we set out an additional sink node and three non-sink nodes. It took an

additional 8 minutes for three of these four new nodes to form links to neighbors, with

one never forming any links and joining the network. In total, four of the seventeen

nodes put out never joined the network, which could be due to hardware failures that

have been present throughout the testing process.

c. Intrusion Events and Generating SPOTREPs

Five separate Marine Corps officers operated the system during the field

experiment to test MSAT’s ability to respond to various types of intrusions into the

TAOR of the LP/OP. We generated SALUTE events, with our Python program, to

present the operators with scenarios over the five-minute test period. Upon the intruder

entering into the sensor field, each operator had to rely on the sensors in order to

determine when an intrusion had taken place in their TAOR. In Figure 38, the initial

detection in the sensor field is shown, as it was displayed to the operator with a mobile

device.

 101

Figure 38. Android Tablet Depicting First Intrusion Detection from the West
Side of the Sensor Field

Once the operator observed the initial detection, they would begin to focus more

intently on the area for supporting evidence of an intruder. The follow-on progression of

an intruder continuing into the sensor field, from initial detection, is displayed in Figure

39. They could utilize the detection and/or the tracks to make this determination. The

majority of the operators waited until tracks formed, which, according to the tracking

algorithm of the system, were the result of three simultaneous detections in close

proximity. The population of a track, after three detections, is shown below in Figure 40.

This strategy of relying on tracks required that the user focus less overall attention on the

screen constantly and decreased the incidences of false positives for intrusion. There

were two false positive intrusions identified during the two days of testing: a flock of

geese in the TAOR caused one, and the other was likely due to vegetation moving in the

wind that caused PIRs on the sensors to trip in the absence of human intruders.

 102

Figure 39. Intruder Continuing into the Sensor Field and Generating Second
Detection

Figure 40. Intrusion Classified Using the Camera After Generating Third
Detection and the Track Indicator

 103

Over the course of the two days of testing, we recorded how far into the sensor

field an intruder was able to travel before the operator identified that an intruder had

entered his TAOR. Without a large variance, targets traveled on average 61 meters into

the sensor field before being identified as intruders by MSAT operators. Only one event

resulted in the intruder making it through the entire sensor field without being identified

by the system.

For each SALUTE event, the operator opened the camera window (shown in

Figure 40) to classify the threat after identifying that an intruder had entered the TAOR.

The length of time it took the operators to orient the camera on the intruder and glean

enough information to generate the SPOTREP was generally more varied than the time to

detect the initial presence of the intruder. Sometimes the operator was able to quickly

and efficiently manipulate the camera and find the target in less than 10 seconds. Other

times they fumbled with the controls—one operator took 37 seconds to get the camera

trained correctly on the target, and there were three instances of the operator not being

able to identify the intruder after initial detection. The rest of the twenty-two events

resulted in the success of the operator in classifying the target. There did not appear to be

any correlation between the speed of the target and the success of classification—two of

the missed intruders were running instead of walking. However, we noticed that the

users had more difficulty utilizing the iPad Mini to control the camera than utilizing the

Android tablet.

Finally, we observed the users as they attempted to complete the SPOTREP form

in the UI and send it to the simulated platoon command post. The SPOTREP is shown

below, in Figure 41. The average length of time to complete the SPOTREPs was 11

seconds, and the average time for the SPOTREP to be received by the command post on

the unused tablet was 1500 milliseconds. The population of the SPOTREP, within a chat

application, and its receipt by the command post is shown in Figure 42. We also observed

that the accuracy of the SPOTREPs completed by the users was very high. During only

one of the twenty-five scenarios, the operator completed an incorrect SPOTREP by

reporting that the intruder was coming from the East, when in fact the intruder was

 104

coming from the west. After this mistake, the operator stated that he had become

disoriented.

Figure 41. Operator Completing SPOTREP With Form After Intrusion
Classification

Figure 42. SPOTREP Sent to Higher Headquarters Via Chat Function

 105

d. Usability Issues

We observed several usability challenges as users interacted with the UI. A major

design flaw discovered was that the application screen would zoom errantly when the

user attempted to manipulate the camera controls. This occurred on several occasions,

and when this happened, the user would find it difficult to zoom the view back out to the

original level and continue using the application. Users were also observed struggling to

capture the intruder on video with the camera while attempting to classify the threat. The

users often panned too far and had to pan back in the reverse direction with smaller

movements under they came on target. The operators also had difficulty using the

camera control buttons due to their small size and one critiqued that the opaqueness of

the buttons made them difficult to see. Additionally, the radio buttons on the SPOTREP

form were too small and were difficult to press by the user. Another user expressed

concern that opening the SPOTREP form took two steps instead of one—first he had to

open the chat widget and from there click a separate button to open the SPOTREP.

It was observed that during periods of bright sunlight, users had difficulty seeing

the display on the tablet. This was an equally difficult problem for both the iPad Mini

and the Android tablet. The users responded by attempting to move into the shade to

reduce the glare.

e. Latency Issues

Multiple tablets connected to the application server at the same time resulted in

noticeable latency. This hurt the responsiveness of the application in the hands of the

operator—map tiles loaded more slowly, the camera became less responsive to user

input, and the video feed would periodically go down. Interestingly, SPOTREPs being

sent over the network through the chat application, which used WebSockets, did not

appear to be affected.

f. Battery Performance and Power Consumption

We ran the system for four hours on both days. Every component in the system

not including the camera—the nodes, the 4G/LTE access point, the application server

 106

laptop, the camera’s wireless relay, and the tablets—ran this entire time using their own

internal power supply. At the end of each four-hour day, the 4G/LTE Hotspot had

consumed only a quarter of its battery capacity, the laptop also consumed only a quarter,

and the nodes did not indicate any significant loss in capacity. The camera did not have

its own battery and was run through an inverter connected to a pickup truck. The pickup

truck’s battery was sufficient to power the camera without the need for the truck to be

started to recharge.

g. Environmental Disturbances

On the second day, a gaggle of geese wandered into the eastern portion of the

sensor field and loitered on the path for about an hour. This led to almost constant

detections from the nodes located in the vicinity of the geese. This initially confused the

operators with a false positive intrusion, causing one operator to believe an intrusion was

taking place. After using the camera to determine what this was, the operator ignored

detections and tracks occurring in the area of the geese, leading him to also ignore a

legitimate intruder entering the field from the area of where the geese were moving. This

indicated an inability to differentiate between active wildlife and human targets using the

system.

On both testing days, vehicles unrelated to testing drove on the path through the

sensor field. These were not used as part of the scenarios, but we noticed that the

vehicles generated noticeably longer track-lines (shown in Figure 43) than dismounted

intruders due to their greater speed, allowing for easy differentiation between vehicles

and dismounts.

 107

Figure 43. Multiple Confused Tracks Due to Environmental Disturbances

h. User Feedback

The system operators provided commentary on the system after use. Overall,

they expressed frustration with the inability to recover from the mistake of accidentally

zooming the application in too far, a problem that could be fixed by locking the display to

zooming. Also, the operators identified the camera as being difficult to control with the

small size of the buttons, and the cameras overall slow response to input. One operator

noted that the application had the tendency to “suck” the user in, meaning that its need

for careful attention caused the user to not pay attention to his physical surroundings.

Additionally, an operator noted that the nodes were too heavy after being allowed to

handle a sensor node. Finally, all users stated that the application would be useful to the

military and expressed their satisfaction with the concept.

7. Conclusion of Field Testing

MSAT field testing highlighted key capabilities and limitations of the prototype

system. The system was capable of detecting intrusions into the TAOR for the majority

 108

of events with a low false positive detection rate. However, these intrusions took on the

order of several tens of meters in order to be registered by the system and alert the

warfighter. Often, the system registered the intrusion after the intruder had already moved

more than 60 meters into the sensor field. In a close combat scenario, this could allow

enemy forces to penetrate close enough to friendly forces to throw hand grenades. An

example of such a scenario would be employing sensors to protect a patrol base located

in a dense urban environment.

MSAT performed during the field testing with a low rate of false positive

detections, even in the face of unforeseen environmental factors such as wildlife and

vehicular traffic. However, the degree of human effort required for target classification

after a detected intrusion proved significant. Due to the absence of a robust threat

classification algorithm, the operator had to be brought very soon into the process cycle

of intrusion detection and threat classification. This means that the human had to expend

much effort through the manipulation of the camera in order to determine what exactly

was intruding into the sensor field. In combat, this effort would come at the expense of

the situational awareness of the warfighter’s immediate surroundings. More automation

in the form of a threat classification algorithm utilizing multiple sensing modalities would

facilitate bringing the operator into the loop later and less frequently than with having to

rely so heavily on video imagery. This would increase the combat power of the

employing unit by freeing up man-hours otherwise required for system monitoring.

MSAT proved capable of autonomous network formation, but the time required to

do so proved too long to be practical in combat. The network should have the capability

to form in less than one minute in order to facilitate rapid deployment for the warfighter.

Additionally, network latency caused unacceptable delays for the user. A TWLAN

providing greater bandwidth would enable better application performance and more

simultaneous users of the system.

The sensor nodes met the requirement to be mobile; a single man carried all of the

nodes used for the field test in a pack. This same individual also hand emplaced the

nodes. Even though a single person could carry all of the sensors, the 43-pound load

should be considered too heavy for an end product. Every measure should be taken to

 109

lessen the weight burden for the modern warfighter by cutting weight in future iterations

of the system. The need for a separate server laptop added to the weight and complexity

of the system and adversely impacted system usability by the warfighter.

The proper placement of the nodes for maximum effectiveness was estimated

based on prior testing and work with the sensor nodes, but no formal TTPs were utilized.

In order to achieve maximum performance from the sensor system, TTPs should be

developed that more precisely prescribe how to set up the sensor system based on the

known capabilities and limitations. This would also ensure fewer gaps in coverage in the

sensor field.

The MSAT performed acceptably across different platforms. Users were able to

use the application on both the Android tablet and iPad, in both landscape and portrait

modes, with minimal issues thus achieving the goal of cross-platform compatibility for

MSAT.

Problems with the UI presented MSAT operators with difficulties that hindered

overall performance. Unresponsive buttons, difficulties manipulating the map, and

screen layout issues would need to be solved through several iterations of testing and

development, but this is outside the scope of the current prototype.

Overall, the field testing indicated that MSAT was capable of providing a remote

LP/OP functionality to the warfighter and providing a high degree of situational

awareness with minimal training, even though the system had shortcomings relating to

usability, power efficiency, weight, and minimal automation in classifying threats.

E. CHAPTER SUMMARY

MSAT, a reference design for an automated LP/OP, was built utilizing an existing

wireless sensor node prototype and COTS components in order to provide a multi-

platform system capable of providing a high degree of situational awareness for ground

tactical units.

In order to build MSAT, DARPA’s ADAPT sensor node prototypes were adopted

and tested by themselves. This field testing revealed that while the prototypes suffered

 110

from some severe limitations such as non-functioning cameras, they offered a functional

platform for providing MSAT with its sensor capability. Not only were these nodes

capable of autonomous network formation, intrusion detection, and tracking, they were

designed from COTS components with the goal of being inexpensive.

MSAT’s application software was developed as the link between the sensor nodes

and the warfighter and to provide additional functionality, such as chat between

simultaneously connected users, blue force tracking, and reporting. The application

software consisted of an application server and UI elements. The server was first

implemented with Apache2; but due to limitations validated with a comparative

benchmarking test, this server was substituted with the better-performing Node.js. The

UI was created with HTML5, JavaScript, and CSS3. Through the implementation of

RWD, the application was made to be compatible with a variety of hardware and

software platforms.

Finally, MSAT’s components were connected via a Wi-Fi network enabled by a

4G/LTE Verizon MiFi hotspot and a surveillance camera was utilized as a substitute for

the sensor nodes’ non-functioning cameras. The entire system was then tested in a field-

environment that simulated a defensive combat scenario. The results of the testing

showed MSAT capable of providing a remote LP/OP capability to a small tactical unit.

However, the limitations of the system call for to future development and testing that

should be completed prior to the fielding of a system meant for warfighters in combat.

 111

V. SUMMARY AND CONCLUSIONS

A. SUMMARY

We developed a reference design for the automation of LP/OPs for use by

infantrymen in combat. Specifically, the design was tailored for the use-case of

supporting a rifle squad in a defensive battle position. To achieve LP/OP automation, the

MSAT prototype was created through the interconnecting of multiple existing

components and the creation of custom application software.

The intrusion detection functionality of MSAT was provided through the use of

sensor nodes developed by DARPA’s ADAPT program. These sensor nodes relied on

the use of internal PIR sensors to detect objects entering the sensor field. The sensor

nodes communicated wirelessly with each other and with handheld monitoring stations

through low powered ground radios and a Wi-Fi network. Additionally, the nodes were

programmed to accomplish autonomous network formation, which had the effect of

minimizing network configurations for operators in the field. As part of normal

operation, nodes shared data with immediate neighbors in a manner that allowed data to

perpetuate hop-by-hop, without the need for a global addressing scheme or globally

aware routing algorithms. Such data included detections (i.e., the actuation of the PIR

sensors), sensor locations acquired from GPS receivers embedded in each node, and

correlated object movement or tracks. Tracks represented the estimated location,

direction, and distance of an intruder moving through the sensor field. The tracking

algorithm, part of node capability developed under the DARPA program, was executed

locally by nodes through the interpretation of multiple detections shared across

neighboring nodes of the sensor field in vicinity of the detected intruder into the sensor

field.

We developed MSAT’s application server in software installed on a Linux laptop.

The application server acted as the intermediary between the sensor nodes in the field and

the operator monitoring the system. This application server received sensor data,

including intrusions and tracks, via Wi-Fi from the nodes. Our application processed this

data into a graphical user interface that was presented to clients through a single page

 112

web application. Connected clients could access MSAT’s graphical interface using the

web browsers on their devices. The web application structure of MSAT allowed

compatibility with a wide range of Android and iOS devices, with minimal need for code

to be tailored to any one particular platform. In addition to providing an interface from

which to monitor the sensor field, MSAT tracked friendly user positions and supported

chat communication between friendly units in order to facilitate coordination on the

battlefield.

We developed the application server initially using Apache server. The inability

of Apache server to service a large number of clients in real-time and the difficultly

customizing the application for the desired use case led us to migrate to Node.js vice

Apache. We conducted benchmark testing in order to compare the performances of

Apache and Node.js servers and validate the decision to incorporate Node.js into MSAT.

Node.js allowed for the creation of a custom application that was more precisely tailored

to the requirements of the system. Additionally, its asynchronous execution model

enabled improved performance.

Inoperable drivers on the sensor nodes precluded the use of the onboard cameras

for classifying intrusions into the sensor field. We integrated an external surveillance

camera with the ability to tilt, pan, and zoom into MSAT as a stopgap solution for the

lack of an operating camera. The application server and UI were modified to be able to

stream real-time video feed to MSAT operators. MSAT operators were also given

controls on the UI to manipulate the camera to view threats in the sensor field.

Client devices, the application server, and sink nodes (i.e., sensor nodes that relay

data to the application server) were networked using 802.11 g/n, with a Verizon MiFi

access point which provided 4G/LTE for outside Internet connectivity.

To enable the remote C2 monitoring scenario, we configured the MSAT

application server to relay sensor data outside of its local network to a proxy server on the

public Internet. This proxy server enabled connections through SSL/TLS to clients

located anywhere with Internet access.

 113

B. MSAT PERFORMANCE

Through a series of tests and demonstrations, the MSAT reference design

demonstrated the viability of an automated LP/OP tool for use by warfighters at the

tactical level. The MSAT prototype showed that a system can be built that is portable,

easy to use, wireless, and compatible with commercial mobile communications

equipment. Most importantly, MSAT showed that an operator could successfully utilize

UGS to generate an accurate SPOTREP, which is the primary performance standard for

the LP/OP. The prototype also identified challenges that must be overcome in order to

provide an end product that is truly usable for the warfighter, including the need for more

automation in threat classification, more power-efficient algorithms, and more sensor

modalities.

 Stand-alone testing of the ADAPT sensor nodes showed the sensors to be usable,

reasonably durable, and capable of detecting intrusions into a sensor field. The nodes also

proved capable of tracking multiple intrusions at a time through the sensor field;

however, the accuracy of the tracks decreased as the targets moved closer together.

Additionally, threat classification was limited only to what could be gleaned from tracks.

Tracks were generated solely through the use of PIR sensors on the nodes. False PIR

triggers due to environmental factors (e.g., vegetation moving in the wind and heavy

rainfall) degraded the accuracy of the intrusion detection and threat tracking. By

including additional sensing modalities in the system, this can be reduced or eliminated

completely. However, the nodes did demonstrate the capability to withstand harsh

environmental conditions such as heavy rainfall and sun exposure.

The nodes had a battery life in the field of several days. Since infantry units may

have to operate for months at a time in the field, in a combat environment without access

to external energy sources, a lifetime in the range of days is too short and would need to

be lengthened. Due to the nodes not reliably operating in a quiescent state, the lifetime

could possibly be extended greatly if a low-power state was implemented.

 Testing of the application server showed that the asynchronous, non-blocking

model of Node.js outperformed the multi-threaded, blocking approach of Apache server.

 114

 The testing of MSAT in a field environment demonstrated that the system could

allow the user to successfully generate SPOTREPs, upon intrusions into the sensor field

without having to directly observe the event, thus limiting potential exposure to the

enemy. The system was successfully used with both Android and iOS devices, showing

cross-platform capability with a single code-base.

The stopgap solution of using a surveillance camera had the secondary effect of

showing the ability of MSAT to easily incorporate new components. Additional sensors

could therefore be introduced that would further enhance the capabilities, or allow the

tailoring of the system to specific use-cases.

C. RECOMMENDATIONS FOR FUTURE WORK

Several improvements could be implemented to make an UGS-based, automated

LP/OP more effective than the MSAT reference design as tested. Multiple sensor

modalities beyond the single PIR sensor could increase tracking accuracy and increase

the level of automation for threat classification. Possible sensors to be used are the

geophone to measure ground movement, microphones to measure environmental audio,

and magnetometers to detect metals in the area, which could classify an intrusion as a

type of vehicle.

More complex threat algorithms would have to be developed to fully leverage the

use of multiple sensors and make threat determinations. These robust threat algorithms

would have the effect of reducing false positives and decreasing the amount of human

involvement in the monitoring of the sensor field. Adding two more PIR sensors to each

node would allow 360-degree coverage and prevent potential gaps in the sensor-field.

Implementing a quiescent state would reduce power consumption and increase the

lifetime in the field. This would require carefully controlling the duty-cycles of the

sensors, such that sensors onboard each node were successively awakened as

environmental noise due to an intruder increased, with only the lowest-power-consuming

sensor (i.e., the PIR) remaining on in the absence of an event. Finally, creating smaller

sensor nodes would reduce the combat load of employing units, and at the same time

reduce the profile to more easily avoid discovery by enemy personnel.

 115

We did not conduct testing regarding information security, or operation in an

electronically jammed environment. Sensors would need to be hardened to potential

attacks to include jamming for denial of service and the unauthorized access by malicious

entities to the sensor node network, which would allow breaches in confidentiality and

integrity of information on the network.

The need for a separate application server apart from the user’s handheld device

proved unwieldy and could be eliminated through the use of an HTML5/Javascript/CSS3

application that could run in the devices’ headless web-engine (e.g., Webkit), which

would implement a stand-alone application on the device and still allow compatibility

across different device models with a single-code base. Another option would be to run

the server on a number of UGS devices, allowing for redundancy and the ability for

mobile devices to approach the sensor field and query it for information. Also, the need

for a separate Wi-Fi access point could be eliminated through the use of Wi-Fi direct on

the mobile device, or through Bluetooth communication with the nodes.

Optimal layout of the sensors on the nodes should be studied to ensure the most

efficient manner for employment. Additionally, the use of unmanned aerial vehicles

(UAV) for integration with the sensor nodes for added surveillance and communication

capabilities should be investigated.

 116

THIS PAGE INTENTIONALLY LEFT BLANK

 117

LIST OF REFERENCES

[1] U.S. Department of Defense. (2007, Dec. 3). Army soldier MIA from Vietnam
War is identified. [Online]. Available:
http://www.defense.gov/Releases/Release.aspx?ReleaseID=11530

[2] V. Kaul, C. Makaya, S. Das, D. Shur and S. Samtani, “On the adaptation of
commercial smartphones to tactical environments,” in Military Communications
Conference, 2011 - MILCOM 2011, Baltimore, MD, Nov.7-9, 2011,
pp. 2205 - 2210.

 [3] Remote Sensor Operations, MCRP 2-24B, U.S. Marine Corps, Washington, DC,
2004, 1.1-1.6.

[4] Capabilities Development Directorate, “PowerPoint: Intel TAMCN review,” July
2006, unpublished.

[5] Z. Sun et al., “BorderSense: Border patrol through advanced wireless sensor
networks,” Ad Hoc Networks, vol. 9, no. 3, pp. 468-477, May 2011.

[6] T. Williams. (2009, Sept.). U.S. Customs and Border Protection’s use of
technology to better secure U.S. borders. [Online]. Available:
http://www.policechiefmagazine.org/magazine/index.cfm?fuseaction=display_arc
h&article_id=1895&issue_id=92009

[7] Infantry Training and Readiness Manual, NAVMC 3500.44,U.S. Marine Corps,
Washington, DC, 2012, 7-20, 7-60.

[8] F.A. Yates Jr., “Diffusion and large-scale adoption of computer-supported
training simulations in the military domain,” M.S. thesis, Dept. MOVES, Naval
Postgraduate School, Monterey, CA, 2013.

[9] M. I. Rostovtzeff, The Social & Economic History of the Roman Empire. New
York, Biblo & Tannen, 1926, p. 228.

[10] B. Lancaster, The American Revolution. Boston: Houghton Mifflin Harcourt,
2001, p. 144.

[11] L. W. Grau and J. Falivene, “Mountain combat: hard to move, hard to shoot, even
harder to communicate,” The Journal of Slavic Military Studies, vol. 19,
 pp. 619-625, 2006.

 [12] Mechanized Infantry Squad Operations (Bradley), FM 7-7J, U.S. Army,
Washington, DC, 1995, Section L.

[13] “An electronic picket line at the DMZ.” Newsweek, (Apr., 1967), p. 25.

 118

[14] J. T. Correll, “Igloo white,” Air Force Magazine, vol. 87, no. 11, pp. 56-61,
Nov. 2004.

[15] U.S. Marine Corps and Lieutenant Colonel S.P. Callahan, Close Air Support and
the Battle for Khe Sanh, Washington, DC: History Division, U.S. Marine Corps,
2009, pp. 9-68.

[16] P. Dickson, The Electronic Battlefield, Bloomington: Indiana University Press,
1976, pp. 74.

[17] P. Brush. (2006, June). Operation Niagara: Siege of Khe Sanh. Vietnam
Magazine. [Online]. Available: http://www.historynet.com/operation-niagara-
siege-of-khe-sanh.htm

[18] E. D. Haider, “Unattended ground sensors and precision engagement,” M.S.
thesis, Dept. Defense Analysis, Naval Postgraduate School, Monterey, CA, 1998.

[19] U.S. Department of Homeland Security, Customs and Border Protection. (2011,
Apr.). Request for information (RFI) unattended ground sensor technology.
Border Enforcement Contracting Division - Mountain Branch. [Online].
Available:
https://www.fbo.gov/index?s=opportunity&mode=form&tab=core&id=8613df5f5
012d854474ee4030b34e510&_cview=0

[20] R. Beckhusen. (2013, Feb.). Homeland security delays plan to place sensors on
U.S. - Mexico border. Wired Magazine. [Online]. Available:
http://www.wired.com/2013/02/border-sensors/

[21] U.S. Department of Homeland Security, Office of Inspector General. (2005,
Dec.). A review of remote surveillance technology along U.S. land borders.
[Online]. Available: http://www.oig.dhs.gov/assets/Mgmt/OIG_06-15_Dec05.pdf

[22] F. Zhao and L. J. Guibas, Wireless Sensor Networks: An Information Processing
Approach, San Francisco, CA: Morgan Kaufmann, 2004, pp. xiii.

[23] Strategic Technology Office. (2014, May). ADAPTable sensor system (ADAPT).
[Online]. Available:
http://www.darpa.mil/Our_Work/STO/Programs/ADAPTable_Sensor_System_(A
DAPT).aspx

[24] M. Hewish, “Little brother is watching you—Distributed networks of miniature
sensors can enhance situational awareness and fulfill many other battlefield
roles,” Janes IDR, vol. 6, pp. 46-52, June 2001.

 119

[25] Silicon Labs, The evolution of wireless sensor networks. (2013, May). [Online].
Available:
http://www.silabs.com/Support%20Documents/TechnicalDocs/evolution-of-
wireless-sensor-networks.pdf

[26] G.E. Moore. (1965, Apr.). Cramming more components onto integrated circuits.
Electronics. [Online]. 38, pp.1-4. Available:
http://web.eng.fiu.edu/npala/eee6397ex/gordon_moore_1965_article.pdf

[27] D. Kushner. (2011, June). The making of arduino. IEEE Spectrum. [Online].
Available: http://spectrum.ieee.org/geek-life/hands-on/the-making-of-arduino

[28] Arduino. (2014, May).Getting started with arduino. [Online]. Available:
http://arduino.cc/en/Guide/HomePage

[29] L. Orsini (2014, April). Easy arduino: Two projects to help you get started.
Readwrite. [Online]. Available: http://readwrite.com/2014/04/21/easy-arduino-
projects-basics-tutorials-diy-hardware#awesm=~oDxb1HpdD68pYj

[30] One of the first raspberry pi computers donated to museum. (2012, Sept.). The
Centre for Computing History. [Online] Available:
http://www.computinghistory.org.uk/news/16944/

[31] Raspberry Pi Foundation. (2014, Apr.).FAQs: what is a raspberry pi. [Online].
Available: http://www.raspberrypi.org/help/faqs/ #introWhatIs

[32] Raspberry Pi Foundation. (2014, Apr.). Web server setup and wordpress.
[Online]. Available: http://www.raspberrypi.org/learning/web-server-wordpress/

[33] Raspberry Pi Foundation. (2014, Apr.).Turn your pi into a low-cost hd
surveillance cam. [Online]. Available: http://www.raspberrypi.org/turn-your-pi-
into-a-low-cost-hd-surveillance-cam/

[34] J.K. Ridner. (2013, Dec.). What is a beaglebone?. BeagleBoard. [Online].
Available: http://beagleboard.org/Products/BeagleBone

[35] Banana Pi. (2014, Apr.). Banana pi—a highend single-board computer. [Online].
Available: http://www.bananapi.org/

[36] QuattroMagic (2014, Apr.). Tech specs – Rikomagic Malaysia. [Online].
Available: http://quattromagic.com/techspecs/

[37] B. Linder. (2012, May). VIA APC: A $49 android computer with an arm 11 cpu.
Liliputing. [Online]. Available: http://liliputing.com/2012/05/via-apc-a-49-
android-computer-with-an-arm11-cpu.html

 120

[38] Intel. (2014, Apr.). Mini pc - intel nuc. [Online]. Available:
http://www.intel.com/content/www/us/en/nuc/overview.html

[39] NinjaBlocks. (2014, Apr.). Ninja blocks – about us. [Online]. Available:
http://shop.ninjablocks.com/pages/about-us

[40] StrongLoop. (2014, July). Big brands rely on node for APIs. [Online]. Available:
http://strongloop.com/developers/node-js-infographic/

[41] E. Marcotte. (2010, May). Responsive web design. [Online]. Available:
http://alistapart.com/article/responsive-web-design/

[42] U.S. Army Signal Center of Excellence. (2011, Aug.). Army cellular capability
development strategy—vision for the future of army mobile computing. SIGCoE.
Fort Gordon, GA. [Online]. Available:
http://www.ecrow.org/pdf/Army_Cellular_Capability_Development_Strategy_16
_August_2011.pdf

[43] L. Edmond, “Mobile computing, smaller systems, bigger solutions,” Army
Communicator, vol. 37, no. 2, pp. 12-13, 24, 32, June 2012.

[44] Fire Support Coordination in the Ground Combat Element, MCWP 3-16.6, U.S.
Marine Corps, Washington, DC, 2001, p. 1-1.

[45] Combat Stress, MCRP 6-11C, U.S. Marine Corps, Washington, DC, 2000, pp. 61.

[46] J. J. Harris and D. R. Segal, “Observations from the Sinai: the boredom factor,”
Armed Forces & Society, vol. 11, no .2, pp. 235-248, Dec., 1985.

[47] Scouting and Patrolling, MCWP 3-11.3, U.S. Marine Corps, Washington, DC,
2000, 6.1-6.2, 14.1.

[48] Marine Rifle Squad, MCWP 3-11.2, U.S. Marine Corps, Washington, DC, 2002,
pp. 5209.

[49] F. Dupont and C. Dean. (2003, Dec.). Hydration and the modern warrior’s load.
Presented at RTO Human Factors and Medicine Panel (HFM). [Online].
Available: http://natorto.cbw.pl/uploads/2004/7/MP-HFM-086-$$ALL.pdf

[50] J. Wolf. (2011, July). Responsive HTML5 apps: Write once, run anywhere?
Where is anywhere? [Online]. Available:
http://www.wired.com/2013/11/responsive-html5-apps-write-once-run-anywhere-
where-is-anywhere/

[51] N. Bevana, J. Kirakowskib and J. Maissela, “What is usability?” in Proceedings
of the 4th International Conference on HCI, Stuttgart, Germany, 1991.

 121

[52] J. J. Garrett. (2005, Feb.). AJAX: A new approach to web applications. Adaptive
Path. [Online]. Available: http://www.adaptivepath.com/ideas/ajax-new-
approach-web-applications/

[53] T. Hammel and M. Rich, “ADAPT smart munitions: Summer camp final
demonstration,” presented at Naval Postgraduate School, Monterey, CA, Sept. 26,
2013, PowerPoint pp. 3,7,9,16-17, 19-22, 25-26, 28-29,33.

[54] Developer Network. (2014, June). Snapdragon S4 plus MSM8960 MDP/S mobile
development platform/smartphone. Qualcomm. [Online]. Available:
https://developer.qualcomm.com/mobile-development/development-
devices/snapdragon-s4-msm8960-mdps

[55] G. Harutyunyan. (2014, June). Node.js package for HTTP basic authentication
password file utility. [Online]. Available: https://github.com/gevorg/htpasswd/

[56] Axis Communications. (2009, Nov.). Axis 214 PTZ network camera user’s
manual. [Online]. Available:
http://www.axis.com/files/manuals/um_214_37546_en_0911.pdf

[57] E. Marcotte, “Our responsive web,” in Responsive Web Design, New York: A
Book Apart, 2011, pp. 3-4.

[58] J. Keith, “Rich media,” in HTML5 for Web Designers, New York: A Book Apart,
2010, pp. 22.

[59] The jQuery Foundation. (2014, Apr.). Our project. [Online]. Available:
https://jquery.org

[60] Leaflet.js. . (2013, Dec.). Leaflet: an open-source javascript library for mobile-
friendly interactive maps. [Online]. Available: http://leafletjs.com

[62] Esri. (2103, Dec.). Esri Leaflet: A lightweight set of tools for using ArcGIS
services with leaflet. [Online]. Available: http://esri.github.io/esri-leaflet/

 122

THIS PAGE INTENTIONALLY LEFT BLANK

 123

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

